Linear Algebra I
§ 2 Matrices \& vectors
If you already saw matrices \& vectors in school you shard still carefully read the definitions.

Definition 2.1 i) A $m \times n$-matrix is an array with m rows and n columns of numbers $a_{i j} \in \mathbb{R}$

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & & \\
a_{m 1} & \cdots & \cdots & a_{m n}
\end{array}\right)=\left(a_{i j}\right)_{\substack{1 \leq i \leq m \\
i \leq j \leq n}}=\frac{\left(a_{i j}\right)}{\eta}
$$

$\mathbb{R}^{m \times n}$: Set of all $m \times n$-matrices clear from context.
ii) A (column) vector of size n is a $n \times 1$-matrix

$$
V=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) . \quad v_{11} \ldots v_{n} \in \mathbb{R}
$$

\mathbb{R}^{n} : Set of all vectors of size n.

$$
-\left(=\mathbb{R}^{n \times 1}\right)
$$

Example 8
For $n=2$ we can visualize vectors in the plane.

$$
\begin{aligned}
& v=\binom{1}{2} \\
& u=\binom{2}{-1}
\end{aligned}
$$

We can also add vectors, e.g. $u+v=\binom{2}{-1}+\binom{1}{2}=\binom{3}{1}$. In general the sum of matrices is defined by just adding each entry:
(ail) ${ }_{\left(b_{i j}\right)}$
Definition 2.2 For " $A, B \in \mathbb{R}^{m \times n}$ and $\lambda \in \mathbb{R}$ we define:

$$
\begin{aligned}
A+B & =\left(a_{i j}+b_{i j}\right) \in \mathbb{R}^{m \times n} \quad \text { (sum of matrices). } \\
\lambda A & =\left(\lambda a_{i j}\right) \in \mathbb{R}^{m \times n} \quad \text { (scalar multiplication). }
\end{aligned}
$$

In the care $\lambda=-1$ we write $-A=(-1) A$.
special case: vectors

$$
u=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right), v=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) \quad u+v=\left(\begin{array}{c}
u_{1}+v_{1} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right), \lambda v=\left(\begin{array}{c}
\lambda v_{1} \\
\vdots \\
\lambda v_{n}
\end{array}\right) .
$$

Warning: Whenever you see "+" you now should be aware if this is the addiction of matrices/vectors or the usual addition of real numbers.

Definition 2.3 The product of a matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$ and a vector $v \in \mathbb{R}^{n}$ is defined by

$$
A v=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & & & \\
\vdots & & \cdots & a_{m n} \\
a_{m 1} & \cdots & v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{11} v_{1}+a_{12} v_{2}+\ldots+a_{1 n} v_{n} \\
\vdots \\
a_{m 1} v_{1}+a_{m 2} v_{2}+\ldots+a_{m n} v_{n}
\end{array}\right) .
$$

$A v$ is just defined if columns of $A=$ size of v.
Proposition 2.4 For $A \in \mathbb{R}^{m \times n}, x, y \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$ we have
i) $A(x+y)=A x+A y$.
ii) $A(\lambda x)=\lambda(A x)$. Proof: Homework 2.

Example 10:
Let $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 4\end{array}\right), b=\binom{1}{2}$.
Find all $x=\left(\begin{array}{l}x_{1} \\ x_{1} \\ x_{3}\end{array}\right) \in \mathbb{R}^{3}$ with $A x=b$.

$$
\begin{aligned}
& A x=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{x_{1}+2 x_{2}+3 x_{3}}{x_{1}+x_{2}+4 x_{3}} \Longrightarrow\binom{1}{2}=b \\
& \Leftrightarrow \\
& \Leftrightarrow \begin{cases}x_{1}+2 x_{2}+3 x_{3}=1 & \text { This is a . lineal } \\
x_{1}+x_{2}+4 x_{3}=2 & \text { Aster . We all coll } \\
\text { Ax }=6 & \text { a linear system. }\end{cases}
\end{aligned}
$$

Solving:

$$
\begin{aligned}
& \text { (1) }\left\{\begin{array} { l }
{ x _ { 1 } + 2 x _ { 2 } + 3 x _ { 3 } = 1 } \\
{ x _ { 1 } + x _ { 2 } + 4 x _ { 3 } = 2 }
\end{array} \Leftrightarrow \left[\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}=1 \\
-x_{2}+x_{3}=1
\end{array}\right.\right. \\
& \Leftrightarrow\left\{\begin{array} { r }
{ x _ { 1 } + 5 x _ { 3 } = 3 } \\
{ - x _ { 2 } + x _ { 3 } = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
x_{1}+5 x_{3}=3 \\
x_{2}-x_{3}=-1
\end{array}\right.\right.
\end{aligned}
$$

Solutions:

$$
\begin{aligned}
& x_{1}=3-5 \cdot t \\
& x_{2}=-1+t \\
& x_{3}=t
\end{aligned} \quad \text { for } t \in \mathbb{R}
$$

Using the vector notation this can be written as:

$$
x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3-5 \cdot t \\
-1+t \\
t
\end{array}\right)=\left(\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right)+t \cdot\left(\begin{array}{c}
-5 \\
1 \\
1
\end{array}\right)
$$

$t=1: x=\binom{3}{-1}+\binom{-5}{1}=\binom{-2}{0} x_{3}$ Plotting this for all possible values of t gives a line in 3 dim space:

Matrix notation for linear systems:
Definition 2.5 For a $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$ the matrix

$$
(A \mid b)=\left(\begin{array}{ccc|c}
a_{11} & \cdots & a_{1 n} & b_{1} \\
\vdots & & \vdots & \vdots \\
a_{m 1} & \cdots & a_{m n} & b_{m}
\end{array}\right) \in \mathbb{R}^{m \times(n+1)}
$$

is called the augmented matrix of the linear halting system $A x=b$.

In the previous example: $(A \mid B)=\left(\begin{array}{llll}1 & 2 & 1 \\ 1 & 1 & 1 & 2\end{array}\right)$.
Solving a linear system (ω) apply row operations on the augmented matrix.

Definition 2.6 Elementary row operations on a matrix:
(RI) Add a multiple of one row to another one.
(R2) Multiply a row with a non-zero number.
(R3) Interchange two rows.
Definition 2.7 Two matrices A and B are called row equivalent, if B can be obtained from A by elementary row operations. Notation: $A \sim B$.

In Example 10 (Matrix notation for solving lin. system)

$$
(A \mid b)=\underset{L}{C}\left(\begin{array}{lll|l}
1 & 2 & 3 & 1 \\
1 & 1 & 4 & 2
\end{array}\right) \sim \underset{(2}{\Gamma}\left(\begin{array}{lll|l}
1 & 2 & 3 & 1 \\
0 & -1 & 1 & 1
\end{array}\right)
$$

(B)

$$
\sim\left(\begin{array}{ccc|c}
1 & 0 & 5 & 3 \tag{BI}\\
0 & -1 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 0 & 5 & 3 \\
0 & 1 & -1 & -1
\end{array}\right)
$$

(RI)
Proposition 2.8 Let $A, B \in \mathbb{R}^{m \times n}$ and $b, c \in \mathbb{R}^{m}$.
If $(A \mid b) \sim(B \mid c)$ then the linear systems $A x=b$ and $B X=C$ have the same solutions.

Definition 2.9 A matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$ is on row-reduced echelon form (rref) if
i) The first non-zerb element on each row (if any) is equal I.
ii) If there is a leading I in a row, then all rows above contain a leading I further to the left.
iii) If $a_{i j}$ is the first non-zero element in row i, then there are no other non-zero elements in the j-th column.
The first nan-zero element in a row of a matrix on ref is called pivot element.

Theorem 2.10 Every matrix A is row equivalent to a unique matrix B on row-reduced echelon form.

Notation: $B=\operatorname{rref}(A)$.
"Proof": Induction on the number of columns. The lean this later.
Solving linear system $A x=b \leadsto$ Find ref $(A \mid b)$
General ref of an augmented matrix

Reading off solutions for lin. system $A x=b$:

$$
\begin{array}{ll}
(A \mid b) \sim(B \mid C)=\operatorname{rref}(A \mid b) \quad & A, B \in \mathbb{R}^{m \times n} \\
& b, c \in \mathbb{R}^{m}
\end{array}
$$

1) If c contains a pivot element $(\lambda=1)$: No solutions Else $(\lambda=0)$:
2) If every column of B contains a pivot element then we have the unique solution $X=C^{\prime}$.
3) Some columns of B do not contain pivot element, In manyitely solutions

Definition 2.11: The rank $\operatorname{rk}(A)$ of a matrix $A \in \mathbb{R}^{m \times n}$ is the number of pivot elements in $\operatorname{rref}(A)$.

Proposition 2.12: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{n}$. The solutions of $A x=b$ depend on $\operatorname{rk}(A \mid b), \operatorname{rk}(A)$ ar follows:
(i) $\operatorname{rk}(A \mid b)>\operatorname{rk}(A)$: No solutions
(ii) $\operatorname{rk}(A \mid B)=\operatorname{rk}(A)=n$: unique solution
(iii) $r k(A \mid b)=r k(A)<n$: Infinitely many solutions

Proof: Follows from the discussion before. (see lecture notes).

