Linear Algebra I
General description of the Gram-Schmidtalg.
Given: Basis $B=\left(b_{1}, \ldots, b_{m}\right)$ of U.
Want construct ONB $F=\left(f_{1}, \ldots, f_{m}\right)$.
Step 1: Set $f_{1}=\hat{b}_{1}=\frac{1}{\left\|b_{1}\right\|} b_{1}$.

$$
U_{1}=\operatorname{span}\left\{f_{1}\right\}=\operatorname{span}\left\{b_{1}\right\} .
$$

Step l: Have ON $\left(f_{1, \ldots}, f_{l-1}\right), u_{l-1}=\operatorname{senan}\left\{f_{l, \ldots} f_{l-1}\right\}$

$$
2 \leq \ell \leq m \quad=\operatorname{span}\left\{b_{1}, p_{R_{1}}\right\}
$$

We can write $b_{l}=\left(b_{l}\right)_{1}+\left(b_{l}\right)_{\perp}^{\text {(ie. }}$

$$
U_{l-1} \quad U_{l-1}
$$

$$
\text { Set } \begin{aligned}
w_{l} & =\left(b_{l}\right)_{\perp}=b_{l}-\left(b_{l} \cdot f_{1}\right) f_{1}-\ldots-\left(b_{l} \cdot f_{l-1}\right) f_{l-1} \\
f_{l} & =\hat{w}_{l}=\frac{1}{\left\|w_{l}\right\|} w_{l} \\
\Rightarrow \quad\left(f_{1, \ldots}, f_{l}\right) O N, u_{l} & =\operatorname{span}\left\{f_{1}, \ldots, f_{l}\right\} \\
& =\operatorname{span}\left\{b_{1}, \ldots, b_{l-1}, f_{l}\right\} \\
& =\operatorname{span}\left\{b_{1}, \ldots, b_{l}\right\} .
\end{aligned}
$$

After m steps $U_{m}=\operatorname{span}\left\{f_{1 \ldots,} f_{m}\right\}$

$$
=\operatorname{span}\left\{b_{1, \ldots}, b_{m}\right\}=U .
$$

$\Rightarrow F=\left(f_{\left.11, \ldots, f_{m}\right)} O N B\right.$ of U.
Theorem 12.8 Every subspace has an ONB.
Proof: Every subspace has a basis (The, 10.4). Using GSA we get an ONB.

Corollary 12.9 Let $U \subset \mathbb{R}^{n}$ be a subspace.
For all $x \in \mathbb{R}^{n}$ there exist unique $X_{I I} \in U$ and $x_{\perp} \in U^{\perp}$ with

$$
x=X_{11}+X_{\perp} .
$$

Proof: Existence: By Thm. 12.6 there exists an OMB $\left(f_{11 .,}, f_{m}\right)$ of U. And by Lemma 12.5 we get x_{11} and x_{\perp}.
Uniqueness: Let $x=x_{11}+x_{\perp}=y_{11}+y_{\perp}$ for $x_{11}, y_{11} \in U$

$$
\Rightarrow u \ni x_{\| I}-y_{\|}=x_{\perp}-y_{\perp} \in u^{\perp}
$$

$$
x_{1}, y_{\perp} \in u^{1} .
$$

$$
\Rightarrow \quad x_{\| 1}-y_{\|}=x_{\perp}-y_{\perp}=0 \Rightarrow x_{n}=y_{\|} \text {and } x_{\perp}=y_{\perp}
$$

Lemma 12.5
§ 13 Orthogonal projection \& Least squares
Motivation: Assume you measure some data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$
and you want to find a line which interpolates there points in the best possible way.
 If all points would lie on a line $l(x)=a x+b$ then they would satisfy

$$
\begin{aligned}
\begin{array}{c}
a x_{1}+b=y_{1} \\
a x_{2}+b=y_{2} \\
a x_{m}+b
\end{array} \\
\vdots y_{m}
\end{aligned} ~ \longrightarrow(\underbrace{\left(\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
x_{m} & 1
\end{array}\right)}_{A}\left(\begin{array}{c}
a \\
a \\
b
\end{array}\right)=\underbrace{\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)}_{y}
$$

But if they are not on one line (like in the picture), then the linear system (x) has no solutions because $y \notin \operatorname{im}(A)$.

But in the picture we see that there might be a "best possible" line.

Main ided: Project y onto the image of A.
\rightarrow obtain a linear system we can solve for ($\left.\begin{array}{l}a \\ b\end{array}\right)$.

$A x=P u(y)$ has a solution x.

Will see: x can be obtained by solving the normal equation

$$
A^{\top} A x=A^{\top} y
$$

Definition 13.1 Let $U \subset \mathbb{R}^{n}$ be a subspace.
The map

$$
\begin{aligned}
P_{u}: & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \quad \text { from Cor. } 12.9 \\
& x \longmapsto x_{\| 1}
\end{aligned}
$$

is the orthogonal projection onto U.
Notice: This generalizes the P_{u} for $u \in \mathbb{R}^{n}, u \neq 0$ we defined before by setting $u=\operatorname{span}\{u\}$.

Proposition 13.2 Let $U \subset \mathbb{R}^{n}$ be a subspace
i) P_{u} is a linear map.
ii) $P_{u}^{2}=P_{u}$.
iii) $\operatorname{Ker}\left(P_{U}\right)=U^{\perp}$ and in $\left(P_{u}\right)=U$.
iv) If $\left(f_{1}, \ldots, f_{m}\right)$ is an ONB of U then

$$
P_{u}(x)=\left(x \cdot f_{1}\right) f_{1}+\ldots+\left(x \cdot f_{m}\right) f_{m}
$$

for all $x \in \mathbb{R}^{n}$.
Proof: iv) is exactly Lemma 12.5 iv).
i), ii), iii) are direct consequences of iv). (check!). +Lemma 1.5

Proposition 13.3 Let $U \subset \mathbb{R}^{n}$ be a subspace and $x \in \mathbb{R}^{n}$.
Then for all $u \in U$ we have

$$
\left\|x-P_{u}(x)\right\| \leq\|x-u\|
$$

We just have " $=$ " in the case $u=P_{u}(x)$.
In other words: If x is outside of U, then $P_{u}(\lambda) \in U$ is the closest point to x which is in U.

Proof: We will not give a proof, but the see lecture statement should be clear by considering notes the following picture.

Definition 13.4 The transpose of a matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$ is the matrix $A^{T}=\left(a_{j i}\right) \in \mathbb{R}^{n \times m}$.

Example:

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \in \mathbb{R}^{2 \times 3} \\
& A^{T}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right) \in \mathbb{R}^{3 \times 2} .
\end{aligned}
$$

Proposition 13.5 i) For $A, B \in \mathbb{R}^{m \times n}$ and $\lambda \in \mathbb{R}$ we have

$$
(A+B)^{\top}=A^{\top}+B^{\top} \quad, \quad(\lambda A)^{\top}=\lambda A^{\top}
$$

ii) For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times l}$ we have

$$
(A B)^{\top}=B^{\top} A^{\top} \in \mathbb{R}^{2 \times m}
$$

iii) For $x, y \in \mathbb{R}^{n}$ we have $x \cdot y=x^{T} y$.

Proof: Can be checked by direct calculation.
For $A \in \mathbb{R}^{\operatorname{man}}$ we can define a linear map $F: x \rightarrow A x$. We write $\operatorname{im}(A):=\operatorname{Ker}(F)$ and $\operatorname{Ker}(A):=\operatorname{Ker}(F)$.

As mentioned in the motivation at the beginning, we are interested in projecting onto the image of A. For this we will first try to understand its orthogonal complement.
Proposition 13.6 For all $A \in \mathbb{R}^{m \times n}$ we have

$$
\operatorname{im}(A)^{\perp}=\operatorname{Ker}\left(A^{\top}\right)
$$

Proof: Let $x \in \mathbb{R}^{n}$. Then we have

$$
y=A v
$$

$$
x \in(\operatorname{im} A)^{\perp} \Leftrightarrow y \cdot x=0 \quad \forall y \in \operatorname{im}(A) \quad \begin{aligned}
& y=A V \\
& \text { for some } \\
& V \in \mathbb{R}^{n}
\end{aligned}
$$

$$
\Leftrightarrow\left(A_{v}\right) \cdot x=0 \quad \forall v \in \mathbb{R}^{n}
$$

$\operatorname{Prop.}$. $1.5\left(\mathrm{iii)}(A v)^{\top} x=0 \quad \forall v \in \mathbb{R}^{n}\right.$
$\stackrel{\text { Prop. } 13.5 \text { ii) }}{\Leftrightarrow} v^{\top} A^{\top} x=0 \quad \forall v \in \mathbb{R}^{n}$
$\Leftrightarrow v \cdot A^{\top} x=0 \quad \forall v \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \Leftrightarrow \quad A^{\top} x \in\left(\mathbb{R}^{n}\right)^{\perp}=\{0\} \\
& \Leftrightarrow \quad A^{\top} x=0
\end{aligned}
$$

$$
\Leftrightarrow \quad x \in \operatorname{Ker}\left(A^{\top}\right) .
$$

Corollary 13.7 Let $A \in \mathbb{R}^{m \times n}$.
i) We have $\operatorname{Ker}\left(A^{\top} A\right)=\operatorname{Ker}(A)$.
ii) The following statements are equivalent

$$
\operatorname{Ker}(A)=\{0\} \quad \Longleftrightarrow \quad A^{\top} A \in \mathbb{R}^{n \times n} \text { is invertible. }
$$

ii)

$$
\operatorname{Ker}(A)=\{0\} \Leftrightarrow \operatorname{Ker}\left(A^{\top} A\right)=\{0\}
$$

Chm. $8.7 \Leftrightarrow A^{\top} A$ is invertible

$$
\begin{aligned}
& A^{\top} A \in \mathbb{R}^{m \times m} \\
& \operatorname{ker}\left(A^{\top} A\right)=\{0\} \Rightarrow \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \\
& x \mapsto A^{\top} x x \\
& \text { is injective }
\end{aligned}
$$

$$
\stackrel{(\Leftrightarrow}{n=m} \stackrel{\text { bijective }}{ }
$$

We can how use our results to answer the question in the motivation.

$$
\begin{aligned}
& \text { Proof: i) We have } \\
& x \in \operatorname{Ker}\left(A^{\top} A\right) \Leftrightarrow A^{\top} A x=0 \Leftrightarrow \tilde{A}^{\in \min } \operatorname{Ker}\left(A^{\top}\right) \stackrel{\perp}{=} \operatorname{im}(A)^{\perp} \\
& \Leftrightarrow A x \in \operatorname{im}(A) \cap \operatorname{im}(A)^{\perp}=\{0\} \\
& \Leftrightarrow \quad A x=0 \\
& \text { Lemma } 12.5 \\
& \Leftrightarrow \quad x \in \operatorname{ker}(A) \text {. }
\end{aligned}
$$

Least squares method
Problem: Given a linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $b \in \mathbb{R}^{m}$.
Find $x \in \mathbb{R}^{n}$ that minimizes

$$
\delta=\|F(x)-b\|
$$

("Least squares" because if $F(x)=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{m}\end{array}\right), b=\left(\begin{array}{c}p_{1} \\ \vdots \\ b m\end{array}\right)$, then $\|F(x)-b\|=\sqrt{\left(y_{1}-b_{1}\right)^{2}+\ldots+\left(y_{m}-b_{m}\right)^{2}}$
We want to minimize the sum of squares of the differences $y_{i}-b_{i}$.

Notice: Minimal δ is $0 \Leftrightarrow b \in \operatorname{im}(\neq)$, ie.

$$
F(x)=b \text { has }
$$

a solution.
By Proposition 13.3 the minimal δ is given in the case $F(x)=P_{i m(f)}(b)$.

Write $[F]=A$, then we want to find $x \in \mathbb{R}^{n}$ such that $A x=P_{i m(f)}(b)$

$$
\begin{aligned}
& \Leftrightarrow A x-b \in(\operatorname{im} A)^{\perp}=\operatorname{ker}\left(A^{\top}\right) \\
& \Leftrightarrow A^{\top}(A x-b)=0 \\
& \Leftrightarrow A^{\top} A x=A^{\top} b
\end{aligned}
$$

Normal equation.
Therefore if $\operatorname{Ker}(A)=\{0\}$ (i.e. the columns of A are lin. indef.)
then (by Corollary 13.7)
$A^{\top} A$ is invertible and we get the unique solution to our problem by

$$
X=\left(A^{\top} A\right)^{-1} A^{\top} b .
$$

Example 44 (Polynom interpolation)
Find the best possible quadratic polynomial

$$
f(t)=a_{0}+a_{1} t+a_{2} t^{2} \text { to fit the }
$$

data points $(0,2),(1,1),(2,2),(3,3)$.
We first translate this problem into linear algebra:

We want to minimize

$$
(f(0)-2)^{2}+(f(1)-1)^{2}+(f(2)-2)^{2}+(f(3)-3)^{2}
$$

So we define the linear map

$$
\begin{aligned}
& F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4} \\
& \begin{array}{l}
\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)
\end{array}>\left(\begin{array}{l}
f(0) \\
f(1) \\
f(2) \\
f(3)
\end{array}\right)=\left(\begin{array}{l}
a_{0}+a_{1} 0+a_{2} 0 \\
a_{0}+a_{1} \cdot 1+a_{2}: 1^{2} \\
a_{0}+a_{1} \cdot 2+a_{2} \cdot 2^{2} \\
a_{0}+a_{1} \cdot 3+a_{2} \cdot 3^{2}
\end{array}\right) \\
&=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right) \frac{\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)}{x}=A x
\end{aligned}
$$

We want to find $x \in \mathbb{R}^{3}$ such that $\|A x-b\|$ with $b=\left(\begin{array}{l}2 \\ 2 \\ 3\end{array}\right)$ is minimal.
\Rightarrow We need to solve the normal equation

$$
\begin{aligned}
& A^{\top} A x=\underline{A^{\top} b}
\end{aligned}
$$

$$
\begin{aligned}
& A^{\top} b=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 3 \\
0 & 1 & 4
\end{array}\right)\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)=\underline{\left(\begin{array}{c}
8 \\
14 \\
36
\end{array}\right)}
\end{aligned}
$$

\Rightarrow Want to solve

$$
\left(\begin{array}{lll}
4 & 6 & 14 \\
6 & 14 & 36 \\
1436 & 98
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)=\underline{\left(\begin{array}{l}
8 \\
14 \\
36
\end{array}\right)}
$$

Unique solution is $a_{0}=\frac{19}{10}$

$$
\begin{aligned}
& a_{1}=-\frac{11}{10} \\
& a_{2}=\frac{1}{2}
\end{aligned}
$$

\Rightarrow Best fit polynomial is $f(t)=\frac{19}{10}-\frac{11}{10} t+\frac{1}{2} t^{2}$

Notice: This works for arbitrary polynomials (ie. in particular for lines).

Always have a unique solution if the columns of A are lin. indef. In applications this is usually the care since usually X data points $>$ degree of

$$
\begin{aligned}
=m & \quad \begin{aligned}
& =n-1 \\
& =\text { rows of } A \\
& =\text { columns } \\
& \text { of } A-1
\end{aligned}
\end{aligned}
$$

If you read this then you finished reading all the content for Linear algebra 1. Congratulations! () $\begin{gathered}\text { Hope to see you } \\ \text { in } L A \$ \text { ! }\end{gathered}$

