Linear Algebra I
$\oint \|$ Coordinates
From now on we will considere ordered bares. This means we will write $\left(b_{1}, \ldots, b_{1}\right)$ for a laris $\left\{b_{1}, \ldots, b_{n}\right\}$. The difference is that $\left\{b_{1}, b_{2}\right\}=\left\{b_{2}, b_{1}\right.$ b but

$$
\left(b_{1}, b_{2}\right) \neq\left(b_{2}, b_{1}\right) .
$$

Definition II.I Let $B=\left(b_{1} \ldots b_{m}\right)$ be a basis of $V \subset R^{n}$. We define the coordinate map by

$$
\begin{aligned}
& C_{B}: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n} \\
&\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{m}
\end{array}\right) \longmapsto \lambda_{1} b_{1}+\ldots+\lambda_{m} b_{m} .
\end{aligned}
$$

Theorem 11.2 Let $B=\left(b_{1} \ldots, b_{m}\right)$ be a basis of $V \subset \mathbb{R}^{n}$.
i) $C_{B}: \mathbb{R}^{m} \longrightarrow V$ is bijective.
ii) For all $x \in V$ there exist unique $\lambda_{11 \ldots, \ldots} \lambda_{m} \in \mathbb{R}$ with $\left(\forall x \in V \exists!\lambda_{1 \ldots, 1}^{\prime} \lambda_{m} \in \mathbb{R}\right) \quad x=\lambda_{1} b_{1}+\ldots+\lambda_{m} b_{m}$.

Proof: i) Since in $C_{B}=\operatorname{span}\left\{b_{1}, \ldots, b_{m}\right\}=V$ the map $C_{B}: \mathbb{R}^{m} \rightarrow V$ is surjective.

$$
\begin{aligned}
\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{m}
\end{array}\right)=\lambda \in \operatorname{Ker} c_{B} & \Leftrightarrow \lambda_{1} b_{1}+\ldots+\lambda_{m} b_{m}=0 \\
& \Rightarrow \quad \lambda=0 \Rightarrow \operatorname{Ker} c_{B}=\{0\}
\end{aligned}
$$

$b_{1, \ldots}, b_{m}$ lin, indef. $\Leftrightarrow C_{B}$ infective
Thu. 8.7.
$\Rightarrow C_{B}$ bijective.
ii) This is just a reformulation of i).

Definition 11.3 Let $B=\left(b_{1} \ldots, b_{m}\right)$ be a basis of $V \subset \mathbb{R}^{n}$ and $x \in V$ with $x=\lambda_{1} b_{1}+\ldots+\lambda_{m} b_{m}$.
i) The number $\lambda_{1, \ldots, \lambda_{m} \in \mathbb{R} \text { are the coordinates of } x}^{x}$
ii) The coordinate vector of x is (in the basis B).

$$
[\bar{x}]_{B}=C_{B}^{-1}(x)=\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{m}
\end{array}\right)
$$

Example 37 1) $B=\left(e_{1, \ldots,}, e_{n}\right)$ is a basis of \mathbb{R}^{n}. For all $x \in \mathbb{R}^{n}$ we have $[x]_{B}=x$.
2) Consider $b_{1}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ and $b_{2}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$. $B=\left(b_{1}, b_{2}\right)$ is a basis of $V=\operatorname{span}\left\{b_{1}, b_{2}\right\}$.
Is $x=\left(\begin{array}{l}3 \\ 4 \\ 5\end{array}\right) \in V$? What is $[x]_{B}$?
We need to solve $\lambda_{1} b_{1}+\lambda_{2} b_{2}=X$.

$$
\begin{aligned}
& b_{1} b_{2} x \\
& \sim \operatorname{l}^{(1)}\left(\begin{array}{cc|c}
1 & 1 & 3 \\
0 & 2 & 4 \\
-1 & 3 & 5
\end{array}\right) \sim \stackrel{(1)}{(2)}(-2)\left(\begin{array}{ll|l}
1 & 1 & 3 \\
0 & 2 & 4 \\
0 & 4 & 8
\end{array}\right) \sim \stackrel{\Gamma}{\Theta}\left(\begin{array}{ll|l}
1 & 1 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) \\
& \sim\left(\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) . \\
& \Rightarrow \quad x=1 \cdot b_{1}+2 \cdot b_{2} \Rightarrow \quad[x]_{B}=\binom{1}{2} \text {. }
\end{aligned}
$$

Proposition 11,4 Let $B=\left(b_{1}, \ldots, b_{m}\right)$ be a basis of $V \subset \mathbb{R}_{1}^{n}$ $x_{1} y \in V_{1} \mu \in \mathbb{R}$, then
i) $[x+y]_{B}=[x]_{B}+[y]_{B}$,
ii) $[\mu x]_{B}=\mu[x]_{B}$,
iii) $[0]_{B}=0$.

Proof: $\quad[x]_{B}=C_{B}^{-1}(x) . \quad C_{B}$ is linear $\Rightarrow C_{B}^{-1}$ linear. All properties follow from the linearity of C_{B}^{-1}.

Definition 11.5 Let $B=\left(b_{1} \ldots, b_{n}\right)$ be a basis of \mathbb{R}^{n}.
The change- of -basis matrix associated with B is

$$
S_{B}=\left[c_{B}\right]=\left(\begin{array}{ccc}
1 & & 1 \\
b_{1} & \cdots & b_{n} \\
1 & & 1
\end{array}\right) \in \mathbb{R}^{n \times n} .
$$

Remark: S_{B} is invertible.

$$
\text { - For all } x \in \mathbb{R}^{n}: \quad S_{B}[x]_{B}=C_{B}\left([x]_{B}\right) .
$$

Definition 11.6 Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map, B_{1} basis of \mathbb{R}^{n}, B_{2} basis of \mathbb{R}^{m}.
The matrix of F with respect to B_{1} and B_{2} is

$$
[F]_{B_{1}}^{B_{2}}=\left[C_{B_{2}}^{-1} \circ F \circ C_{B_{1}}\right] .
$$

In the care $n=m$ and $B_{1}=B_{2}$ we write $[\mp]_{B_{1}}=[\mp]_{B_{1}}^{B_{1}}$.

Proposition 11.7 Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map, B_{1} basis of \mathbb{R}^{n}, B_{2} basis of \mathbb{R}^{m}.
i) We have $[\mp]_{B_{1}}^{\beta_{2}}=S_{B_{2}}^{-1}[F] S_{B_{1}}$.
ii) If $B_{1}=\left(b_{1}, \ldots, b_{n}\right)$ then

$$
[F]_{B_{1}}^{B_{2}}=\left(\begin{array}{cc}
1 & 1 \\
{\left[F\left(b_{1}\right)\right]_{B_{2}}} & \cdots \\
1 & {\left[F\left(b_{n}\right)\right]_{B_{2}}} \\
1
\end{array}\right) .
$$

Proof: i)

$$
\begin{aligned}
{[F]_{B_{1}}^{B_{2}}=\left[C_{B_{2}}^{-1} \circ F \cdot C_{B_{1}}\right] } & =\left[C_{B_{2}}^{-1}\right][F]\left[C_{B_{1}}\right] \\
& =S_{B_{2}}^{-1}[F] S_{B_{1}}
\end{aligned}
$$

ii) The isth column of $[F]_{B_{1}}^{B_{2}}$ is

$$
\begin{aligned}
{[F)_{B_{1}}^{\beta_{2}} e_{i}=C_{B_{2}}^{-1}\left(F\left(C_{B_{1}}\left(e_{i}\right)\right)\right) } & =C_{B_{2}}^{-1}\left(F\left(b_{i}\right)\right) \\
& =\left[F\left(b_{i}\right)\right]_{B_{2}}
\end{aligned}
$$

Example 38
1)

$$
\begin{array}{rll}
F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, & B_{1}=\left(e_{1 \ldots,}, e_{n}\right) & {\left[C_{B_{1}}\right]=I_{n}} \\
& B_{2}=\left(e_{1}, \ldots, e_{m}\right) & {\left[C_{B_{2}}\right]=I_{m}}
\end{array}
$$

Then $[F]_{B_{1}}^{B_{2}}=[F]$

$$
\text { 2) } \left.\begin{array}{rl}
P_{u} & : \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad u=\binom{-3}{2} \\
\text { Kep } P_{u} & =\left\{x \in \mathbb{R}^{2} \mid u \cdot x=0\right\} \\
& =\operatorname{span}\left\{\binom{2}{3}\right\}
\end{array}\right\}
$$

u and v are linearly indef. $\Rightarrow B=(u, v)$ is a basis of \mathbb{R}^{2}.
We have $P_{u}(u)=u$ and $P_{u}(v)=0$, i.e.

$$
\left[P_{u}\right]_{B}=\left[P_{u}\right]_{B}^{B}=\left(\begin{array}{cc}
{\left[P_{u}^{\prime}(v)\right]_{B}} & {\left[P_{u}^{\prime}(v)\right.} \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

Change-of-baris matrix:

$$
S_{B}=\left(\begin{array}{ll}
1 & 1 \\
u & v \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
-3 & 2 \\
2 & 3
\end{array}\right) .
$$

Inverse: $\quad S_{B}^{-1}=\left(\begin{array}{cc}-\frac{3}{13} & \frac{2}{13} \\ \frac{2}{13} & \frac{3}{13}\end{array}\right) \quad$ (Check!)
By Prop 11.7 we have $\left[P_{u}\right]_{B}=\left[P_{u}\right]_{B}^{B}=S_{B}^{-1}\left[P_{u}\right]_{B}$

$$
\begin{aligned}
\Rightarrow \quad[F]=S_{B}\left[P_{u}\right]_{B} S_{B}^{-1} & =\left(\begin{array}{cc}
-3 & 2 \\
2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
-\frac{3}{13} & \frac{2}{13} \\
\frac{2}{13} & \frac{3}{13}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{9}{13} & -\frac{6}{13} \\
-\frac{6}{13} & \frac{4}{13}
\end{array}\right) .
\end{aligned}
$$

You can check that this gives the same matrix you calculated in HW4 Ex (ii).
3) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the reflection in the plane $U=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)_{1}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$.

Goal: Determine the matrix of $[\bar{F}]$.
Idea:- Find "good" basis B, where we can write down $[F]_{B}$ directly.

- For this try to find $v \in \mathbb{R}^{3}$ which is orthogonal to u_{1}, u_{2} and set $B=\left(u_{1}, u_{2}, v\right)$.
(Notice: u_{1}, u_{2} are lin. indef.)

To find $v=\left(\begin{array}{l}v_{1} \\ v_{1} \\ v_{3}\end{array}\right) \in \mathbb{R}^{3}$ with $v \cdot u_{1}=v \cdot u_{2}=0$ we need to solve $\left\{\begin{array}{r}v_{1}+v_{2}=0 \\ v_{2}+v_{3}=0\end{array}\right.$.
$\leadsto\left(\begin{array}{lll|l}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0\end{array}\right) \sim\left(\begin{array}{ccc|c}1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0\end{array}\right)$
$\Rightarrow \quad$ all solutions are given by $t \cdot\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$. we chore $t=1$, i.e. set

$$
V=\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right) \text {. }
$$

Chess: $u_{11} u_{2}, v$ are linearly independent $\Rightarrow B=\left(u_{1}, u_{2}, v\right)$ is a basis of \mathbb{R}^{3}.
We have $F\left(u_{1}\right)=u_{1} \Rightarrow\left[F\left(u_{1}\right)\right]_{B}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$

$$
\begin{aligned}
F\left(u_{2}\right)=u_{2} & \Rightarrow\left[F\left(u_{2}\right)\right]_{B}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
F(v)=-v & \Rightarrow[F(v)]_{B}=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right) \\
\Rightarrow \quad[\bar{F}]_{B} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) .
\end{aligned}
$$

change-of-baris matrix:

$$
S_{B}=\left(\begin{array}{ccc}
U_{1} & 1 & 1 \\
1 & u_{2} & v_{1} \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & -1 \\
0 & 1 & 1
\end{array}\right)
$$

check: $\quad S_{B}^{-1}=\frac{1}{3}\left(\begin{array}{rrr}2 & 1 & -1 \\ -1 & 1 & 2 \\ 1 & -1 & 1\end{array}\right)$

$$
\begin{gathered}
\Rightarrow[F]=S_{B}[F]_{B} S_{B}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & -1 \\
0 & 1 & 1
\end{array}\right) \frac{1}{3}\left(\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 1 & 2 \\
1 & -1 & 1
\end{array}\right) \\
=\frac{\frac{1}{3}\left(\begin{array}{ccc}
1 & 2 & -2 \\
2 & 1 & 2 \\
-2 & 2 & 1
\end{array}\right)}{} .
\end{gathered}
$$

