Linear Algebra I
Recall Definition 9.2 Vectors $v_{1}, \ldots, v_{l} \in \mathbb{R}^{m}$ are called linearly independent if the equation

$$
\lambda_{1} v_{1}+\ldots+\lambda_{l} v_{l}=0 \quad\left(\lambda_{1} \ldots, \lambda_{l} \in R\right)
$$

just has the unique solution $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{l}=0$.
Otherwise $v_{1} \ldots, v_{e}$ are called linearly dependent.
Theorem 9.3 Let $v_{1} \ldots, v_{e} \in \mathbb{R}^{m}$. The following statements ave equivalent:
i) $v_{1} \ldots, v_{e}$ ave linearly dependent.
iii) There exists a $j=1 . .1$ with

$$
\operatorname{span}\left\{v_{1, \ldots, 1} v_{j-1}, v_{j+1} \ldots, v_{l}\right\}=\operatorname{span}\left\{v_{1} \ldots, v_{l}\right\} .
$$

Lemma $9.4 \vee \subset \mathbb{R}^{n}$ subspace, $v_{1} \ldots, v_{l} \in V$ lin, indef.

$$
\text { If } V=\operatorname{span}\left\{w_{1}, \ldots, w_{m}\right\} \text { for some } w_{1, \ldots,}, w_{m} \in \mathbb{R}^{n} \Rightarrow l \leq m
$$

Lemma 9.5 If $v_{1, \ldots}, v_{l} \in \mathbb{R}^{n}$ are linearly independent and $\omega \in \mathbb{R}^{n}$ with $\omega \notin \operatorname{span}\left\{v_{1}, \ldots, v_{l}\right\}$ then $v_{1}, \ldots, v_{1} w$ are linearly independent.
Proof: Assume that $\lambda_{1} v_{1}+\ldots+\lambda_{l} v_{l}+\mu \omega=0$.
If $\mu \neq 0$, then $w=\left(\frac{\lambda_{1}}{\mu}\right) v_{1}+\ldots+\left(\frac{\lambda_{l}}{\mu}\right) v_{l} \in \operatorname{span}\left\{v_{1} \ldots v_{l}\right\}$.
Hence $\mu=0 \Rightarrow \lambda_{1} v_{1}+\ldots+\lambda_{l} v_{l}=0$

$$
\Rightarrow \lambda_{1}=\ldots=\lambda_{l}=0
$$

$v_{1 \ldots \ldots}, v_{l}$ are $\Rightarrow v_{11} \ldots, v_{l} w$ are lin. indef.
lin. indef.
$\oint 10$ Bases \& Dimension
We saw that if $v_{11}, v_{e} \in \mathbb{R}^{n}$ are linearly
dependent, then there exit a $1 \leq j \leq l$ such that

$$
\operatorname{span}\left\{v_{1} \ldots v_{l}\right\}=\operatorname{span}\left\{v_{1 \ldots, v_{j-1}} v_{j+1, \ldots,} v_{\ell}\right\} .
$$

Therefore we will be just interested in the case when $v_{1} \ldots, v_{e}$ are linearly independent.
Definition 10.1 Let $V \subset \mathbb{R}^{n}$ be a subspace.
Vectors $v_{1 \ldots} V_{e} \in V$ form a basis of V if
i) $V=\operatorname{span}\left\{V_{1} \ldots, V_{l}\right\}$
ii) $V_{1, \ldots, V_{e}}$ are linearly independent

Notation: We say $\left\{v_{1}, \ldots, v_{l}\right\}$ is a basis of V.
Later we consider ordered basis and write (v_{1}, \ldots, v_{ℓ}) order matters Note: $\left\{\begin{array}{l}\{, 2\}=\{2,1\} \\ \text { but }(1,2)\}(2,1)\end{array}\right\}$

Example 34

1) $\left\{e_{1}, e_{2}\right\},\left\{e_{1},(!)\right\},\left\{e_{2},(1)\right\}$ are three different bases of \mathbb{R}^{2}.
2) $u=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{cc}1 \\ -1 \\ 1\end{array}\right), ~\left(\begin{array}{c}-1 \\ 5 \\ 1 \\ v_{2}\end{array}\right)\right\}$.

Find a basis for U.
We have seen in Example 33:

- v_{1}, v_{2}, v_{3} are linearly dependent because $-2 v_{1}+3 v_{2}+v_{3}=0$.
- $v_{3} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$

$$
\Rightarrow U=\operatorname{span}\left\{v_{1}, v_{2}\right\}
$$

Lemma 9.1

- V_{1}, V_{2} are linearly independent
$\Rightarrow\left\{v_{1}, v_{2}\right\}$ is a basis of U.

3) For any $n \geq 1 \quad\left\{e_{11}, \ldots, e_{n}\right\}$ is a basis of \mathbb{R}^{n} This basis is called the standard basis.

Theorem 10.2 Let $V c \mathbb{R}^{n}$ be a subspace
i) V has a basis.
ii) All bases of V have the same number of elements.
iii) If $v_{1} \ldots, v_{l} \in V$ ave linearly independent then there exist $u_{\ell+1} \ldots, u_{t} \in V$ such that $\left\{v_{11 \ldots,}, v_{\ell}, u_{\ell+11} \ldots, u_{t}\right\}$ is a basis of V. (possibly no u are needed!)
iv) If $V=\operatorname{span}\left\{\omega_{1} \ldots, \ldots, \omega_{m}\right\}$ then there exists a subset $\left\{u_{11 \ldots,} u_{l}\right\} \subset\left\{w_{1} \ldots w_{m}\right\}$ such that $\left\{u_{1}, \ldots, u_{l}\right\}$ is a basis of V. equality possible!
Proof:
ii): Let $\left\{v_{1} \ldots, v_{l}\right\}$ and $\left\{w_{1, \ldots,} w_{m}\right\}$ be a basis of V

iv): (1) If $\left\{w_{1}, \ldots, w_{m}\right\}$ are lin-indep. we are done and $\left\{w_{1} \ldots W_{m}\right\}$ is a bass is of V. (The fibred in jut)
(2) Assume $\left\{w_{11 \ldots}, w_{m}\right\}$ are lin. dependent.

By Theorem 9.3 there exist a $j=l_{1 \ldots, m}$ with
$\operatorname{span}\left\{w_{1, \ldots}, w_{j-1}, w_{j+1} \ldots, w_{m}\right\}=\operatorname{span}\left\{w_{1}, \ldots, w_{m}\right\}=V$
Now repeat (1) \& (2) with $\left\{w_{1}, \ldots, w_{j-1}, w_{j+1}, \ldots w_{m}\right\}$, ie. remove vectors w_{j} until the remaining vectors are lin. indef.
iii) Assume $V_{11} \ldots, v_{e} \in V$ are lin. indep.
(1) If $\operatorname{span}\left\{v_{1} \ldots, v_{l}\right\}=V$ we are done and $\left\{v_{1}, \ldots, v_{l}\right\}$ is a basis of V.
(2) If $\operatorname{span}\left\{v_{1} \ldots, v_{\ell}\right\} \neq v$ then there exists $u \in V$ with $u \notin \operatorname{span}\left\{v_{1 \ldots, v_{l}}\right\}$. Set $u_{l+1}=u$. By Lemma 95 $v_{1 \ldots, 1} v_{l,} u_{l+1}$ are lin. indef.
Repeat (1) \& (2) until $V=\operatorname{span}\left\{v_{1, \ldots}, v_{l}, u_{l+1} \ldots, \ldots, u_{t}\right\}$.
i) If $V=\{0\}$ then $\phi=\{ \}$ is a basis. Else construct $(\operatorname{span} \phi:=\{0\})$ a basis using iii).

Definition 10.3 Let $V \subset \mathbb{R}^{n}$ be a subspace.
The dimension of V, denoted by $\operatorname{dim}(V)$, is the number of elements in a basis of V.
(Notice: this definition makes sense because of The 10.2 i)erii))
Example 35 1) $\operatorname{dim} \mathbb{R}^{n}=n$, becaure $\left\{e_{1} \ldots, e_{n}\right\}$ is a basis of \mathbb{R}^{n}.
2) The dimension of $U=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{c}1 \\ 1 \\ 1 \\ v_{2}\end{array}\right),\left(\begin{array}{c}-1 \\ 5 \\ 1\end{array}\right)\right\}$ is $\operatorname{dim}(u)=2$ because $\left\{v_{1}, v_{2}\right\}$ is a basis.

Corollary $10.4 \quad \vee \subset \mathbb{R}^{n}$ subspace with $\operatorname{dim} V=m$ and $V_{1} \ldots, V_{m} \in V$. Then the following statements are equivalent.
i) $v_{1} \ldots, v_{m}$ are lin. indef.
ii) $V=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$.
iii) $\left\{v_{1, \ldots, v_{m}}\right\}$ is a basis of V.

Proof: i) \Rightarrow ii): If $V \neq \operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$ then by Thu. 10.2 iii) there would exist a basis with more than m elements. But $\operatorname{dim}(v)=m$ i.e. $V=\operatorname{span}\left\{v_{1} \ldots, v_{m}\right\}$.
ii) \Rightarrow i): If $V_{1} \ldots V_{m}$ would be lin. dependent then by $T h_{m}$.9.3. there would exist a basis with less than m elements. But $\operatorname{dim}(v)=m$.
$\Rightarrow V_{1, . .} V_{m}$ are lin. independent.
i) + ii) \Leftrightarrow iii) by definition.

Example 36 Determine bases for $\operatorname{Ker}(F)$ and $\operatorname{im}(F)$ of the following linear map:

$$
\begin{aligned}
F: & \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3} \\
& X \longmapsto\left(\begin{array}{cccc}
1 & -2 & 1 & 2 \\
2 & -4 & 1 & 3 \\
0 & 0 & 1 & 1
\end{array}\right) X
\end{aligned}
$$

Kernel:

$$
\begin{aligned}
& \left.[F]=\stackrel{(-2)}{L}\left(\begin{array}{cccc}
1 & -2 & 1 & 2 \\
2 & -4 & 1 & 3 \\
0 & 0 & 1 & 1
\end{array}\right) \leadsto \otimes\left(\begin{array}{cccc}
1 & -2 & 1 & 2 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & -2 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)=\operatorname{rref}(F)\right) \\
& x \in \operatorname{Ker}(F) \Leftrightarrow[F] x=0 \Leftrightarrow x_{1}=2 t_{1}-t_{2} \\
& x_{2}=t_{1} \quad t_{1} t_{2} \in \mathbb{R} \\
& x_{3}=-t_{2} \\
& x_{4}=t_{2} \\
& \Leftrightarrow x=t_{1}\left(\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
v \\
v_{1}
\end{array}\right)+t_{2}\left(\begin{array}{c}
-1 \\
0 \\
-1 \\
1 \\
1 \\
v_{2}
\end{array}\right) \Rightarrow \operatorname{Kev}(F)=\operatorname{span}\left\{v_{1}, v_{2}\right\} .
\end{aligned}
$$

v_{1}, v_{2} lin. indef.?

$$
0=t_{1} v_{1}+t_{2} v_{2}=\left(\begin{array}{c}
2 t_{1}-t_{2} \\
t_{1} \\
-t_{2} \\
t_{2}
\end{array}\right) \Rightarrow t_{1}=t_{2}=0
$$

$\Rightarrow v_{1}, v_{2}$ lin. indep
$\Rightarrow\left\{v_{1}, v_{2}\right\}$ basis of $\operatorname{ker}(F)$.

Image:

$$
\left.\begin{array}{l}
\operatorname{im}(F)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
-2 \\
-4 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)\right. \\
u_{1} \quad u_{2} u_{3} u_{4}
\end{array}\right\}
$$

$$
\begin{aligned}
& \text { Saw before } \\
& \Rightarrow\left(\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3} \\
\lambda_{4}
\end{array}\right)=t_{1}\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right)+t_{2}\left(\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right) \text { for } t_{1}, t_{2} \in \mathbb{R} \text {. } \\
& t_{1}=1, t_{2}=0: \quad 2 u_{1}+u_{2}=0 \Rightarrow u_{2}=-2 u_{1} \\
& \in \operatorname{span}\left\{u_{1}, u_{3}\right\} \\
& t_{1}=0_{1} t_{2}=1: \quad-u_{1}-u_{3}+u_{4}=0 \quad \Rightarrow u_{4}=u_{1}+u_{3} \\
& \in \operatorname{span}\left\{u_{1}, u_{3}\right\} \\
& \Rightarrow \operatorname{im}(F)=\operatorname{span}\left\{u_{1}, u_{3}\right\}
\end{aligned}
$$

u_{1} and u_{3} are lin. indep because $\lambda_{1} u_{1}+\lambda_{3} u_{3}=0$:

$$
\left(\begin{array}{ll|l}
1 & 1 & 0 \\
2 & 1 & 0 \\
0 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & u_{3}
\end{array}\right) \Rightarrow \lambda_{1}=\lambda_{3}=0 .
$$

$\Rightarrow\left\{u_{1}, u_{3}\right\}$ is a basis of $\operatorname{im}(F)$.

General cal culation of a basis for $\operatorname{Ker}(F)$ and $\operatorname{im}(F):$
Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map.

$$
x \longmapsto A x
$$

- Let $\operatorname{rref}(A)$ have pivot elements in columns G_{1}, \ldots, c_{r}. Then the columns $c_{1 \ldots, \ldots} c_{r}$ in A form a basis of in (F).

$$
\Rightarrow \quad \operatorname{dim}(\operatorname{im}(F))=\not \neq \text { pivot elements in } \operatorname{ref} f(A)
$$

- The vectors obtained in the "standard parametviration" (i.e. for each free variable there is a parameter t_{i}) of the solutions of $F(x)=0$ form a basis of $\operatorname{ker}(F)$.

$$
\Rightarrow \quad \operatorname{dim}(\operatorname{Kev}(\nexists))=x \text { free variables }
$$

As a consequence we get the following

Theorem 10.5 For a linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ we have

$$
\operatorname{dim}(\operatorname{ker}(F))+\operatorname{dim}(\operatorname{im}(F))=n
$$

Proof: $n=$ columns of $[F]$
$\operatorname{dim}(\operatorname{ker}(\#))=$ columns without pivot elements.
$\operatorname{dim}(\operatorname{im}(F))=\neq$ columns with pivot elements.

