Linear Algebra I
§o Introduction "What is linear algebra?"

Linear Algebra = "study of solutions of linear equations."

More precisely: Study of "flat" spaces, called vector spaces / linear spaces. (e.g. lines, planes, 3 dim-space, ...)

In this course we will just consider \mathbb{R}^{n}.
and maps between these spaces, called linear maps (e.g, rotations, projections,...).

- Earliest origins in China more than 2000 years ago.
- Modern form: early $20^{\text {th }}$ century.
- Universally useful in Mathematics, Sciences \& Engineering (e.g. 3D Graphics) and life.
$\oint 1$ Linear systems

$\mathbb{R}:$ The set of real numbers, e.g. $1,2,-1, \frac{1}{3}, \sqrt{2}, \pi, e, \ldots$. " $b \in \mathbb{R}$ ": b is an element in \mathbb{R}, i.e b is a real number.
Definition 1.1
i) $\frac{\text { Linear equation: }}{\text { (lin. eq) }} a_{1} x_{1}+\ldots+a_{n} x_{n}=b \quad a_{1 \ldots, \ldots,} a_{n}, b \in \mathbb{R}$
ii) Linear system: A finite collection of lin. eq..
iii) Solution of a linear system: Simultaneous solution to all of its eq..

Goal: Given a linear system find all of its solutions.

$$
\begin{aligned}
& \text { Example 2) We use the numbering of the } \\
& \text { lecture notes. } \\
& \text { "This implies" }
\end{aligned}
$$

Is $x_{1}=-\frac{5}{4}, x_{2}=\frac{4}{7}$ a solution to the original linear system?

Yes, because the operations work also in reverse.
$\Gamma_{3} \rightarrow\left\{\begin{array}{l}x_{1}=-\frac{5}{7} \\ x_{2}=\frac{4}{7}\end{array} \Rightarrow\left\{\begin{array}{r}x_{1}+3 x_{2}=1 \\ x_{2}=\frac{4}{7}\end{array} \Rightarrow\left\{\begin{array}{r}x_{1}+3 x_{2}=1 \\ 7 x_{2}=4\end{array}\right.\right.\right.$

$$
\Rightarrow\left\{\begin{array}{l}
x_{1}+3 x_{2}=1 \\
-2 x_{1}+x_{2}=2
\end{array}\right.
$$

Therefore:

$$
\left\{\begin{array} { l }
{ x _ { 1 } + 3 x _ { 2 } = 1 } \\
{ - 2 x + x _ { 2 } = 2 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x_{1}=-\frac{5}{7} \\
x_{2}=\frac{4}{7}
\end{array}\right.\right.
$$

Iff "if and only if".

This linear system has exactly one solution.

Example 3 Now consider the following linear system
(-2) (-3) $\xrightarrow{\longrightarrow}\left\{\begin{array}{c}x_{1}-9 x_{2}-3 x_{3}+x_{4}=4 \\ 3 x_{1}-2 x_{2}+x_{3}-2 x_{4}=2 \\ 2 x_{1}+7 x_{2}+4 x_{3}-3 x_{4}=-2 \\ 25 x_{2}+9 x_{3}-2 x_{4}=-4\end{array} \Leftrightarrow\left[\begin{array}{l}(-1) \\ 4\end{array} \begin{array}{l}x_{1}-9 x_{2}-3 x_{3}+x_{4}=4 \\ 25 x_{2}+10 x_{3}-5 x_{4}=-10 \\ 25 x_{2}+10 x_{3}-5 x_{4}=-10 \\ 25 x_{2}+9 x_{3}-2 x_{4}=-4\end{array}\right.\right.$
\Leftrightarrow

$$
\Leftrightarrow\left[\begin{array} { r l }
{ x _ { 1 } - 9 x _ { 2 } } & { - 8 x _ { 4 } } \\
{ x _ { 2 } } & { = - 1 4 } \\
{ x _ { 4 } } & { = 2 } \\
{ x _ { 3 } - 3 x _ { 4 } } & { = - 6 }
\end{array} \Leftrightarrow \left\{\begin{array}{rl}
x_{1} \\
x_{2} & =4 \\
+x_{4} & =2 \\
x_{3}-3 x_{4} & =-6
\end{array}\right.\right.
$$

$$
\Leftrightarrow\left\{\begin{array}{l}
x_{1}=4-x_{4} \\
x_{2}=2-x_{4} \\
x_{3}=-6+3 x_{4}
\end{array}\right.
$$

The variable x_{4} can be chooren arbitrary.
We set $x_{4}=t$ for some $t \in \mathbb{R}$.

All the solutions are given by $x_{1}=4-t$ for $t \in \mathbb{R}$.

$$
\begin{aligned}
& x_{2}=2-t \\
& x_{3}=-6+3 t \\
& x_{4}=t
\end{aligned}
$$

Equation (*): Each equation contains a variable that occurs in no other equation: $\left(x_{1}, x_{2}, x_{3}\right)$, called pivot variables.

The other variables $\left(x_{4}\right)$ are called free variables.

This equation is in row-reduced echelon form (see HWI for a definition). Later we will define this
How to get to this form? for matrices.

Definition 1.2 Elementary row operations
(RI) Add a multiple of an eq. to another.
(R2) Multiply an eq. with a non-zero number.
(R3) Change the order of the eq.
Since all elementary row operations york in reverse we get:
Proposition 1.3 Applying an elementary row operation to a linear system does not change the set of all solutions of this linear system.

Algorithm 1.4 aka "row reduction"
General solutions method (Gaussian elimination)
(Brin gr a linear system to row-reduced echelon form)
I: Downwards:
.1) Make the first eq. contain the first variable
2) Make the coefficient of this variable $=1$
3) Eliminate this variable from all other eq.
\because 4) Iterate with first occuring variable in the remaining eq.

II: Upwards

1) Let X_{i} be the first variable in the last ea. Eliminate X_{i} from all other eq. (RI)
2) Go to previous eq. and iterate.

Example 4
(RB)
(RI)

$$
\leftrightarrows\left\{\begin{aligned}
-x_{3}+x_{4} & =0 \\
x_{1}+x_{2}+x_{3}-x_{4} & =0 \\
x_{1}+x_{2}-x_{3} & =1
\end{aligned}\right.
$$

$$
\Leftrightarrow \stackrel{\oplus}{\leftrightarrows}\left\{\begin{aligned}
& x_{1}+x_{2}+x_{3}-x_{4}=0 \\
&-x_{3}+x_{4}=0 \\
& x_{1}+x_{2}-x_{3}=1
\end{aligned}\right.
$$

\Leftrightarrow
(R2)

$$
\left\{\begin{array} { r l }
{ x _ { 1 } + x _ { 2 } + x _ { 3 } - x _ { 4 } } & { = 0 } \\
{ - x _ { 3 } + x _ { 4 } } & { = 0 } \\
{ - 2 x _ { 3 } + x _ { 4 } } & { = 1 }
\end{array} \Leftrightarrow \left({ }_{L}^{2)},\left\{\begin{aligned}
x_{1}+x_{2}+x_{3}-x_{4} & =0 \\
x_{3}-x_{4} & =0 \\
-2 x_{3}+x_{4} & =1
\end{aligned}\right.\right.\right.
$$

\Leftrightarrow
(RR)

$$
\left\{\begin{aligned}
x_{1}+x_{2}+x_{3}-x_{4} & =0 \\
x_{3}-x_{4} & =0 \\
-x_{4} & =1
\end{aligned}\right.
$$

From here on upuards
(RI)
(RI)

$$
\Leftrightarrow \stackrel{\Gamma}{\oplus}\left\{\begin{array} { r l }
{ x _ { 1 } + x _ { 2 } + x _ { 3 } } & { = - 1 } \\
{ x _ { 3 } } & { = - 1 } \\
{ x _ { 4 } } & { = - 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{rl}
x_{1}+x_{2} & =0 \\
x_{3} & =-1 \\
x_{4} & =-1
\end{array}\right.\right.
$$

The free variables can be choosen arbitrary. free variable We set $x_{2}=t, t \in \mathbb{R}$.

All solutions are given by $x_{1}=-t$ for $t \in \mathbb{R}$.

$$
\begin{aligned}
& x_{2}=t \\
& x_{3}=-1 \\
& x_{4}=-1
\end{aligned}
$$

