Homework 2: Matrices \& Vectors

Deadline: 29th October, 23:55, 2023

Exercise 1. $\left(2+2=4\right.$ Points) Show that for all $A \in \mathbb{R}^{m \times n}, x, y \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$ we have
(i) $A(x+y)=A x+A y$,
(ii) $A(\lambda x)=\lambda(A x)$.
(Without using Proposition 2.4. from the lecture).

Let $A \in \mathbb{R}^{m \times n}$ be a matrix. The $\operatorname{rank} \operatorname{rk}(A)$ of A is the number of pivot elements in $\operatorname{rref}(A)$.
For example,

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
2 & 0 & 1 \\
1 & -1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -2 & 1 \\
0 & -2 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -2 & 1 \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & \frac{1}{2} \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 0
\end{array}\right)=\operatorname{rref}(A)
$$

and therefore the rank of A is $\operatorname{rk}(A)=2$.

Exercise 2. $\left(2+1+3=6\right.$ Points) Let $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ be a polynomial of degree 3 with real coefficients $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}$. For such a polynomial p define the vector v_{p} by

$$
v_{p}=\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \in \mathbb{R}^{4}
$$

(i) Find a matrix $D \in \mathbb{R}^{4 \times 4}$, such that $v_{q}=D v_{p}$, where $q(x)=2 p(x)-p^{\prime}(x)$.
(Here p^{\prime} denotes the derivative of the polynomial p with respect to x).
(ii) Determine the rank of D in (i).
(iii) For an arbitrary polynomial p of degree 3 , find a polynomial s, such that $v_{p}=D v_{s}$.

Exercise 3. $\left(2+2=4\right.$ Points) Let $A \in \mathbb{R}^{3 \times 3}$ be a matrix.
(i) Show that if $\operatorname{rk}(A)=3$ then there exists just one vector $x \in \mathbb{R}^{3}$ with $A x=0$.
(ii) Show that if $\operatorname{rk}(A) \leq 2$ then there exist infinitely many vectors $x \in \mathbb{R}^{3}$ with $A x=0$.

Exercise 4. $\left(4+2=6\right.$ Points) Let $a, b, c, d \in \mathbb{R}$ and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(i) Show that $\operatorname{rk}(A)=2$ if and only if $a d-b c \neq 0$.
(ii) We define the following subset of \mathbb{R}^{2}

$$
L=\left\{x \in \mathbb{R}^{2} \mid x=A v \text { for some } v \in \mathbb{R}^{2}\right\}
$$

How does L look like if $\operatorname{rk}(A)=1$? How does it look like if $\operatorname{rk}(A)=2$?

Hello～クマ先生 here．With another homework comes another Japanese lesson～
This week，I have three words prepared for this time：

ほうていしき
万程式

These three words are：gyouretsu（matrix），houteishiki（equation），and bekutoru（vector）．While the Japanese word for vector is a direct transliteration of the English word vector，the other two are not so．

The first word（行行列）also has a meaning in everyday life：a procession（e．g．a wedding procession）．
The second word（方程式），however，appears more in the sciences．Famous examples include Schrödinger＇s Equation（シュレディンガー方程式）and Maxwell＇s Equations（マクスウェルの方装程式）．Generally，how－

Anyway，now，a breakdown of the individual 漢字 that makes up these two words：

And that＇s it for today＇s（Mathematical）Japanese word（s）．またね～

