1) (12 Points) Let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ccc}2 & -4 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$ and $C=A^{T} B A=2(3$
i) Determine whether or not the matrices A, B, and C are invertible and, if they are, compute their inverses.
ii) Determine $\operatorname{im}(C), \operatorname{ker}(C)$ and $\operatorname{im}(C) \cap \operatorname{ker}(C)$.
iii) Give a basis for $\operatorname{ker}\left(C^{n}\right)$ for all $n \geq 1$.
i) Determine a basis $B=\left(b_{1}, \ldots, b_{m}\right)$ of U and calculate its dimension.
ii) Calculate the coordinate vectors $\left[u_{1}\right]_{B},\left[u_{2}\right]_{B},\left[u_{3}\right]_{B}$ and $\left[u_{4}\right]_{B}$, where B is the basis from i).
iii) Find a linear map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $\operatorname{ker}(F)=U^{\perp}$ and determine a basis of $\operatorname{im}(F)$.
2) (12 Points) Let $D \in \mathbb{R}^{2 \times 2}$ be an arbitrary matrix. Which of the following sets are subspaces? Justify your answers.
i) $U_{1}=\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, 2 x_{1}-x_{2}=-x_{3}+x_{2}\right\}$.
ii) $U_{2}=\left\{x \in \mathbb{R}^{2023} \mid x \bullet x \geq-2023\right\}$.
iii) $U_{3}=\left\{x \in \mathbb{R}^{2} \mid\right.$ There exists a $y \in \mathbb{R}^{2}$ with $\left.D y=3 x\right\}$.
iv) $U_{4}=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, x_{1}+x_{2}=0\right\} \cup\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, x_{1} \cdot x_{2} \leq 0\right\}$.
3) (12 Points) We consider the vector $b=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$, the linear map

$$
G: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{4}
$$

and define the subspace $U=\operatorname{im}(G)$.

$$
\binom{x_{1}}{x_{2}} \longmapsto\left(\begin{array}{cc}
1 & 1 \\
-1 & 1 \\
1 & 3 \\
-1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}, b_{2}\left(b_{1}, b_{2}\right) \quad \text { basis of } 4
$$

i) Show that $\operatorname{dim}(U)=2$ and find an orthonormal basis $F=\left(f_{1}, f_{2}\right)$ of U.

ii) Determine the orthogonal projection $y=P_{U}(b)$ of b onto U and calculate $[y]_{F}$.
iii) Find a $x \in \mathbb{R}^{2}$ such that $\|G(x)-b\|$ is minimal.

1) (14 Points) Let $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & -2 \\ 1 & 2 & 5\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 1 & -2 \\ -1 & 2 & 5\end{array}\right)$.
i) Determine whether or not the matrices A and B are invertible and, if they are, compute their inverses.
ii) Calculate the matrix $B A$ and decide if $B A^{n}$ is invertible for any integer $n \geq 1$.
iii) Determine if $\operatorname{im}(A) \cup \operatorname{im}(B)$ and $\operatorname{im}(A) \cap \operatorname{im}(B)$ are subspaces and, if they are, determine a basis.
2) (12 Points) We define the subspace $U=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \subset \mathbb{R}^{3}$, where

$$
u_{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad u_{2}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right), \quad u_{3}=\left(\begin{array}{c}
3 \\
-4 \\
-1
\end{array}\right), \quad u_{4}=\left(\begin{array}{c}
4 \\
-2 \\
2
\end{array}\right)
$$

i) Determine a basis $B=\left(b_{1}, \ldots, b_{m}\right)$ of U and calculate its dimension.
ii) Calculate the coordinate vectors $\left[u_{1}\right]_{B},\left[u_{2}\right]_{B},\left[u_{3}\right]_{B}$ and $\left[u_{4}\right]_{B}$, where B is the basis from i).
iii) Calculate an orthonormal basis $F=\left(f_{1}, \ldots, f_{m}\right)$ for U and determine $\left[u_{1}\right]_{F},\left[u_{2}\right]_{F},\left[u_{3}\right]_{F}$ and $\left[u_{4}\right]_{F}$
iv) Determine a basis for U^{\perp}.
3) (12 Points) Set $u=\binom{3}{4}$ and let $C \in \mathbb{R}^{2 \times 2}$ be an arbitrary matrix. Which of the following subsets of \mathbb{R}^{2} are subspaces? Justify your answers.
i) $U_{1}=\left\{x \in \mathbb{R}^{2} \mid x \bullet x=x \bullet u\right\}$.
ii) $U_{2}=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, 2 x_{1}-x_{2}=3 x_{2}\right\}$.
iii) $U_{3}=\left\{x \in \mathbb{R}^{2} \mid C x=x\right\}$.
iv) $U_{4}=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, x_{1} \cdot x_{2} \geq x_{1}\right\}$.
4) (12 Points) Assume we have the following data points

i	1	2	3
x_{i}	1	2	3
y_{i}	0	-1	-3

i) Find the line of best fit for the above data, i.e. find $m, n \in \mathbb{R}$ such that the function $l(x)=m x+n$ minimizes the sum of squares $\sum_{i=1}^{3}\left(l\left(x_{i}\right)-y_{i}\right)^{2}$.
ii) We define the following linear map

$$
\begin{aligned}
H: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{3} \\
\binom{x_{1}}{x_{2}} & \longmapsto\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

and set $V=\operatorname{im}(H)$. Determine a basis of V and for $b=\left(\begin{array}{c}0 \\ -1 \\ -3\end{array}\right)$ calculate the orthogonal projection $P_{V}(b)$. Use your result to show that b is not an element in V.

After finishing this exam submit your solution as one pdf file at NUCT at the "Final exam" assignment.

1) (12 Points) Let $A=\left(\begin{array}{ccc}1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 2 & -1 \\ -2 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.
i) Compute the products $A B$ and $B A$, or explain why they are not defined.
ii) Determine whether or not the matrices A and B are invertible and, if they are, compute their inverses.
iii) Find all $x \in \mathbb{R}^{3}$ with $A^{T} A A^{T} A A^{T} A x=0$. Justify you answer.
2) (12 Points) We define the subspace $U=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \subset \mathbb{R}^{3}$, where

$$
u_{1}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \quad u_{2}=\left(\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right), \quad u_{3}=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right), \quad u_{4}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) .
$$

i) Determine a basis $B=\left(b_{1}, \ldots, b_{m}\right)$ of U and calculate its dimension.
ii) Calculate the coordinate vectors $\left[u_{1}\right]_{B},\left[u_{2}\right]_{B},\left[u_{3}\right]_{B}$ and $\left[u_{4}\right]_{B}$, where B is the basis from i).
iii) Find a linear map $G: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $\operatorname{im}(G)=U$. What is the dimension of $\operatorname{ker}(G)$?
3) (12 Points) Set $u=\binom{-1}{2}$. Which of the
i) $U_{1}=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, 2 x_{1}-3 x_{2}=x_{1}\right\}$.
ii) $U_{2}=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, x_{1}\right.$ is an integer, i.e. $\left.x_{1} \in\{\ldots,-2,-1,0,1,2, \ldots\}\right\}$.
iii) $U_{3}=\left\{x \in \mathbb{R}^{2} \mid x \notin \operatorname{span}\{u\}\right\}$.
iv) $U_{4}=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\,\binom{ x_{1}}{x_{2}} \bullet u=x_{1}\right\}$.
4) (14 Points) We define the following linear map

$$
\begin{aligned}
H: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{3} \\
\binom{x_{1}}{x_{2}} & \longmapsto\left(\begin{array}{cc}
1 & 1 \\
-2 & 4 \\
2 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} .
\end{aligned}
$$

i) Show that $\operatorname{dim}(\operatorname{im}(H))=2$.
ii) Calculate an orthonormal basis $\left(f_{1}, f_{2}\right)$ for $\operatorname{im}(H)$.
iii) Find a vector $v \in \mathbb{R}^{3}$, such that $B=\left(f_{1}, f_{2}, v\right)$ is an orthonormal basis for \mathbb{R}^{3}.
iv) Calculate $[H(x)]_{B}$ for any $x=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$.
v) Find a $x \in \mathbb{R}^{2}$ such that $\|H(x)-b\|$ is minimal, where $b=\left(\begin{array}{c}-5 \\ 1 \\ -1\end{array}\right)$.

After finishing this exam please send your solution as one pdf file to
henrik.bachmann@math.nagoya-u.ac.jp

1) (12 Points) Let $A=\left(\begin{array}{cccc}0 & 1 & -2 & 3 \\ 1 & -2 & 3 & -4 \\ -2 & 3 & -4 & 5\end{array}\right)$ and $B=\left\lvert\,\left(\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2\end{array}\right)\right.$.
i) Compute the products $A B$ and $B A$, or explain why they are not defined.
ii) Determine whether or not the matrices A and B are invertible and, if they are, compute their inverses.

$$
\begin{aligned}
& B x=y \\
& x=B^{-1} y
\end{aligned}
$$

iii) Calculate $\operatorname{im}(B)$ and $\operatorname{ker}(B)$.
2) (14 Points) We define the subspace $U=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}\right\} \subset \mathbb{R}^{3}$, where

$$
u_{1}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \quad u_{2}=\left(\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right), \quad u_{3}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)
$$

i) Determine a basis $B=\left(b_{1}, \ldots, b_{m}\right)$ of U and calculate its dimension.
ii) Calculate the coordinate vectors $\left[u_{1}\right]_{B},\left[u_{2}\right]_{B}$ and $\left[u_{3}\right]_{B}$, where B is the basis you determined in i).
iii) Determine a basis for U^{\perp}.
iv) Find a linear map $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with $\operatorname{ker}(G)=\{0\}$ and $\operatorname{im}(G)=U$.
3) (10 Points) Which of the following subsets of \mathbb{R}^{2} are subspaces? Justify your answers.
i) $U_{1}=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, x_{1}+x_{2}=x_{1} x_{2}\right\}$.
ii) $U_{2}=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, 2 x_{1}=x_{1}+x_{2}\right\}$.
iii) $U_{3}=\operatorname{span}\left\{\binom{2}{2}\right\} \cup \operatorname{span}\left\{\binom{2}{1}\right\}$.
(Friendly reminder: \cup is the union of two sets)
4) (14 Points) We define the following linear map

$$
\begin{aligned}
T: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{3} \\
\binom{x_{1}}{x_{2}} & \longmapsto\left(\begin{array}{cc}
1 & 2 \\
0 & 3 \\
-1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

i) Calculate an orthonormal basis $F=\left(f_{1}, \ldots, f_{r}\right)$ for $\operatorname{im}(T)=\operatorname{span}\left\{b_{1}, b_{2}\right\}$
ii) Check for which $t \in \mathbb{R}$ the vector $v=\left(\begin{array}{l}1 \\ t \\ 1\end{array}\right)$ is an element in $\operatorname{im}(T)$. Determine the coordinate vector $[v]_{F}$ in this case.
iii) Find a $w \in \mathbb{R}^{3}$ with $[w]_{F}=\binom{1}{2}$.
iv) Find a $x \in \mathbb{R}^{2}$ such that $\|T(x)-b\|$ is minimal, where $b=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$.
(In ii) and iii) the F is the basis of $\operatorname{im}(T)$ you calculated in i)).

$$
U=\operatorname{span}\left\{\begin{array}{c}
\left(\begin{array}{l}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) \\
b_{1} \\
b_{2}
\end{array}\right\} \subset \mathbb{R}^{3}
$$

iii) Determine a basis for U^{\perp}.

$$
\begin{gather*}
U^{\perp}=\left\{x \in \mathbb{R}^{3} \mid x \cdot b_{1}=x \cdot b_{2}=0\right\} \\
\| \\
\operatorname{Ker}\binom{-b_{1}}{-b_{2}} \\
y \\
\operatorname{Ker}\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right)
\end{gather*}
$$

iv) Find a linear map $G: \underset{\cup}{\mathbb{R}^{2}} \rightarrow \mathbb{R}^{3}$ with $\operatorname{ker}(G)=\left\{{ }^{\prime \prime}\right\}$ and $\operatorname{im}(G)=U$.

$$
\begin{aligned}
& G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& X \longmapsto 3_{1}^{1}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
-1 \\
-1
\end{array} 0_{1}\right) X \\
& \operatorname{im}(G)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)\right\}=U \\
& \operatorname{Ker}(G)=\{(0)\} \text { since lin.indep. }
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{1}\left(\begin{array}{l}
1 \\
0 \\
-1
\end{array}\right)+\lambda_{2}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \underbrace{}_{\left(\begin{array}{ll}
1 & 1 \\
0 & 2 \\
-1 & 0
\end{array}\right)\binom{\lambda_{1}}{\lambda_{2}}}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \Leftrightarrow\binom{\lambda_{1}}{\lambda_{2}} \in \operatorname{ker}(A)
\end{aligned}
$$

A is invertible, B is not invertible Calculate the matrix $B A$ and decide if $B A^{n}$ is invertible for any integer $n \geq 1$.
$A^{n}=\underbrace{A \cdot A \cdot A \cdot A}_{n} \frac{\text { is aloinverible for all } n \geq 1}{\left(A^{n}\right)^{-1}}$
A^{-1} is invertible $\Rightarrow\left(A^{n}\right)^{-1}$ invertible Is $B A^{n}$ invertible?
No. If $B A^{n}$ would be invertible then $B A^{n}\left(A^{n}\right)^{-1}=B\binom{$ would }{ se invertity }

Is
ii) $U_{2}=\{\binom{x_{1}}{x_{2}} \in \overbrace{\mathbb{R}^{2} \mid 2 x_{1}=x_{1}+x_{2}}^{\mid 1 ?}\}$. a subspace?

$$
\begin{aligned}
& \operatorname{ker}(F) \\
& F: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \binom{x_{1}}{x_{2}} \mapsto\left(x_{1}-x_{2}\right)=\left(\begin{array}{ll}
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& U=\{\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, \underline{x_{1}+x_{2}=0} \text { and } \underbrace{x_{3}=x_{1}-x_{2}}\} \\
& \geqslant k e r(6) \\
& -x_{1}+x_{2}+x_{3}=0 \\
& G: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \\
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \mapsto\binom{x_{1}+x_{2}}{-x_{1}+x_{2}+x_{3}}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
& u=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, x_{1} x_{2}=0\right\} \\
& H: \mathbb{R}^{2} \rightarrow \mathbb{R}^{\prime} \longleftarrow^{\text {Not } \operatorname{lin}} \quad \begin{array}{c}
\text { map! }
\end{array}
\end{aligned}
$$

$$
\binom{x_{1}}{x_{2}} \mapsto\left(x_{i} r_{2}\right)
$$

Sol. for 1) iii) 2022:
Why $\operatorname{Ker}(C) \subset \operatorname{Ker}\left(C^{n}\right)$

$$
\text { If } x^{4} \text { then } C x=0
$$

Then ${ }_{c c}^{n}(c x)=C^{n-1}\left(C^{0}(x)=0\right.$
$\Rightarrow \stackrel{(c \cdots(c x)}{x \in \operatorname{Ker}\left(C^{n}\right)}$

$$
\begin{array}{r}
(A \cdot B) C \stackrel{A^{\text {Arocative }}}{=} A \cdot(B \cdot C) \\
\# \\
B(A C)
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
V=\left(\begin{array}{l}
\frac{1}{11} \\
\frac{3}{1} \\
\frac{2}{11}
\end{array}\right)=\frac{1}{11} \frac{\|v\|}{\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)}=\sqrt{\left(\frac{1}{11}\right)^{2}+\left(\frac{2}{11}\right)^{2}+(\sqrt{1})^{2}} \\
\hat{V}=\frac{1}{\|v\|} v
\end{array} \\
& \|u\|=\sqrt{1^{2}+3^{2}+2^{2}} \\
& =\sqrt{14} \\
& \hat{u}=\frac{1}{\| \| \|} u \\
& =\frac{1}{\sqrt{17}}\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)=\hat{v}
\end{aligned}
$$

