1) (12 Points) Let $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & -3 \\ -2 & 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}-1 & 0 & -1 \\ -4 & 1 & -1 \\ -3 & 1 & 0\end{array}\right)$.
(i) Determine whether or not the matrices A, B are invertible and, if they are, compute their inverses.
(ii) Calculate $C=B A$ and find all vectors $x \in \mathbb{R}^{3}$ with $C x=x$.
(iii) Give a basis for $\operatorname{ker}\left(A^{n} B\right)$ for all $n \geq 1$.
2) (14 Points) We define the subspace $U=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \subset \mathbb{R}^{3}$, where

$$
u_{1}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right), \quad u_{2}=\left(\begin{array}{c}
0 \\
-3 \\
3
\end{array}\right), \quad u_{3}=\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right), \quad u_{4}=\left(\begin{array}{c}
-1 \\
5 \\
-1
\end{array}\right) .
$$

(i) Determine a basis $B=\left(b_{1}, \ldots, b_{m}\right)$ of U and calculate its dimension.
(ii) Calculate the coordinate vectors $\left[u_{1}\right]_{B},\left[u_{2}\right]_{B},\left[u_{3}\right]_{B}$, and $\left[u_{4}\right]_{B}$, where B is the basis from (i).
(iii) Determine an orthonormal basis $F=\left(f_{1}, \ldots, f_{m}\right)$ of U.
(iv) Calculate the orthogonal projection $P_{U}(b)$ of $b=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and decide if b is an element in U.
3) (12 Points) Let $u, v \in \mathbb{R}^{3}$ be two arbitrary non-zero vectors. Which of the following sets are subspaces? Justify your answers.
(i) $U_{1}=\left\{x \in \mathbb{R}^{3} \mid x \bullet u=u \bullet u\right\}$.
(ii) $U_{2}=\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x_{1}-x_{2}=3 x_{3}+x_{2} \quad\right.$ and $\left.\quad x_{2}=x_{1}-x_{3}\right\}$.
(iii) $U_{3}=\left\{x \in \mathbb{R}^{3} \mid x \neq u\right\}$.
(iv) $U_{4}=\operatorname{span}\{u, v\} \cup \operatorname{span}\{u+v, u-v\}$.
4) (12 Points) Assume we have the following data points

i	1	2	3
x_{i}	1	2	3
y_{i}	0	2	3

(i) Find the line of best fit for the above data, i.e. find $a, b \in \mathbb{R}$ such that the function $l(x)=a x+b$ minimizes the sum of squares $\sum_{i=1}^{3}\left(l\left(x_{i}\right)-y_{i}\right)^{2}$.
(ii) We define the following linear map

$$
\left.\begin{array}{rl}
F & : \mathbb{R}^{2} \\
\binom{x_{1}}{x_{2}} & \longmapsto\left(\mathbb{R}^{3}\right. \\
x_{1}+x_{2} \\
2 x_{1}+x_{2} \\
3 x_{1}+x_{2}
\end{array}\right) .
$$

and set $V=\operatorname{im}(F)$. Determine the orthogonal projection $P_{V}(y)$ of $y=\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right)$ onto V.
(iii) Give a basis B of V and determine $\left[P_{V}(y)\right]_{B}$, where V and y are the same as in (ii).

1) (12 Points) Let $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & -3 \\ -2 & 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}-1 & 0 & -1 \\ -4 & 1 & -1 \\ -3 & 1 & 0\end{array}\right)$.
(i) Determine whether or not the matrices A, B are invertible and, if they are, compute their inverses.
(ii) Calculate $C=B A$ and find all vectors $x \in \mathbb{R}^{3}$ with $C x=x$.
(iii) Give a basis for $\operatorname{ker}\left(A^{n} B\right)$ for all $n \geq 1$.
(i) We calculate $\operatorname{rref}\left(A \mid I_{3}\right)$ and $\operatorname{rref}\left(B \mid I_{3}\right)$:

$$
\begin{aligned}
& \sim\left(\begin{array}{ccc|ccc}
1 & 0 & -1 & 0 & -1 \\
0 & 1 & -1 & -1 & 1 & -1 \\
0 & 0 & 1 & -2 & - & -1
\end{array}\right)=\left(I_{3} \mid A^{-1}\right) \\
& \Rightarrow A \text { is invertible with inverse } A^{-1}=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
-2 & 1 \\
-2 & -1
\end{array}\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow B \text { is not invertible since ref }(B)=\left(\begin{array}{l}
10 \% \\
(0,0) \\
(0)
\end{array}\right.
\end{aligned}
$$

(ii) We have

$$
C=B A=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
-4 & 1 & -1 \\
-3 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & -3 \\
-2 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 1 & 0
\end{array}\right)
$$

$I_{3} x$
Since $C_{x}=\widetilde{x}$ is equivalent to $\left(C-I_{3}\right)_{x=0}$ we need to calculate $\operatorname{Ker}\left(C-I_{3}\right)$.

$$
C-I_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 & 1 & -1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\operatorname{rref}\left(C-I_{3}\right)
$$

\Rightarrow The solutions $x=\left(\begin{array}{l}x_{1} \\ x_{1} \\ x_{3}\end{array}\right)$ of $(x=x$ are given by

$$
\begin{aligned}
& x_{1}=t_{1}-t_{2} \\
& x_{2}=t_{1} \\
& x_{3}=t_{2}
\end{aligned} \quad \text { for } t_{1}, t_{2} \in \mathbb{R} .
$$

(They are $\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)\right\}$).
(iii) Since A invertible $\Rightarrow A^{n}$ invertible $\forall n 21$

$$
\Rightarrow \operatorname{Ker}\left(A^{n}\right)=\{0\}
$$

we have that $x^{n} y=0$ if and only if $y=0$.
Therefore $A^{n} B x=0$ if and only if $B x=0$.

$$
\Rightarrow \quad \operatorname{Ker}\left(A^{n} B\right)=\operatorname{Ker}(B) .
$$

By (i) we have $\operatorname{rref}(B)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ and therefore the solutions of $B_{x}=O$ with $x=\binom{(x)}{\dot{x})}$ are $x_{1}=-t$ are $\begin{aligned} x_{1} & =-t \\ & x_{2}=-3 t \\ x_{3} & =t\end{aligned} \quad$ for $\quad t \in \mathbb{R}$, ie. $x=t\left(\begin{array}{c}-1 \\ -3 \\ 1\end{array}\right)$.

$$
\Rightarrow \quad \operatorname{Ker}\left(A^{n} B\right)=\operatorname{Ker}(B)=\operatorname{span}\left\{\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right)\right\}
$$

$\Rightarrow \quad\left(\left(\begin{array}{c}-1 \\ 3 \\ 1\end{array}\right)\right.$ is a basis of $\operatorname{Ker}\left(A^{n} B\right)$ 如I,
2) (14 Points) We define the subspace $U=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \subset \mathbb{R}^{3}$, where

$$
u_{1}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right), \quad u_{2}=\left(\begin{array}{c}
0 \\
-3 \\
3
\end{array}\right), \quad u_{3}=\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right), \quad u_{4}=\left(\begin{array}{c}
-1 \\
5 \\
-1
\end{array}\right) .
$$

(i) Determine a basis $B=\left(b_{1}, \ldots, b_{m}\right)$ of U and calculate its dimension.
(ii) Calculate the coordinate vectors $\left[u_{1}\right]_{B},\left[u_{2}\right]_{B},\left[u_{3}\right]_{B}$, and $\left[u_{4}\right]_{B}$, where B is the basis from (i).
(iii) Determine an orthonormal basis $F=\left(f_{1}, \ldots, f_{m}\right)$ of U.
(iv) Calculate the orthogonal projection $P_{U}(b)$ of $b=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and decide if b is an element in U.

$$
\begin{aligned}
& \text { (i) We calculate } \operatorname{rref}\left(u_{1} \dot{u}_{2}, u_{1}^{\prime} \dot{u}_{i}\right) \text { : } \\
& \left(\begin{array}{llll}
d_{1} & 1 & u_{2} & u_{2} \\
1 & u_{4} \\
1 & 1 & 1 & 1
\end{array}\right)=\left[\begin{array}{cccc}
0 & 0 & -1 & -1 \\
-1 & -3 & 3 & 5 \\
1 & 3 & 1 & -1
\end{array}\right) \\
& \overrightarrow{\operatorname{Con}} \Gamma_{\Gamma}\left(\begin{array}{cccc}
1 & 3 & 1 & -1 \\
0 & 0 & 4 & 4 \\
0 & 0 & -1 & -1
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 3 & 0 & -2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) . \\
& \Rightarrow B=\left(\begin{array}{c}
b_{1} \\
\tilde{u}_{1} \\
\tilde{u}_{1}, \\
\tilde{u}_{3}
\end{array}\right) \text { is a basis of } U \text {. } \\
& \Rightarrow \operatorname{dim}(u)=2 \text {. }
\end{aligned}
$$

(ii) From (i) we get

$$
\left[u_{1}\right]_{B}=\binom{1}{0},\left[u_{2}\right]_{B}=\binom{3}{0},\left[u_{3}\right]_{B}=\binom{0}{1},\left[u_{4}\right]=\binom{-2}{1} .
$$

(iii) We use the GSA to construct (f_{1}, f_{2})

$$
\begin{gathered}
\operatorname{from}\left(b_{1}, b_{2}\right)=\left(u_{1}, u_{3}\right): \\
f_{1}=\frac{1}{\left\|b_{1}\right\|} b_{1}=\underline{\underline{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)} \quad f \cdot b_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right) \\
w_{2}=b_{2}-\left(f_{1} \cdot b_{2}\right) f_{1}=\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right)+\frac{2}{\sqrt{2} \sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right) . \\
f_{2}=\frac{1}{\left\|w_{2}\right\|} w_{2}=\frac{1}{\sqrt{9}}\left(\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right) .
\end{gathered}
$$

(iv) Since $\left(f_{1}, f_{2}\right)$ is an ONB of U, we have $P_{u}(b)=\left(f_{1} \cdot b\right) f_{1}+\left(f_{2} \cdot b\right) f_{2}$

$$
\left.\begin{array}{l}
=\left(\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\right)
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)+(\frac{1}{3}(\overbrace{\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)}^{9}) \frac{1}{3}\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right)
$$

Therefore $P_{u}(b) \neq b$ and thus $\xlongequal{b \notin U}$. $\left(\begin{array}{c}\text { because } \\ p_{0}(x)=x \\ \text { for all } x \in u\end{array}\right)$
3) (12 Points) Let $u, v \in \mathbb{R}^{3}$ be two arbitrary non-zero vectors. Which of the following sets are subspaces? Justify your answers.
(i) $U_{1}=\left\{x \in \mathbb{R}^{3} \mid x \bullet u=u \bullet u\right\}$.
(ii) $U_{2}=\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, \underbrace{x_{2}=x_{1}-x_{3}}_{\mathbf{X}_{1}-2 \mathbf{X}_{2}-3 \mathbf{X}_{3}=0 \quad \underbrace{x_{1}-x_{2}=3 x_{3}+x_{2}}_{\mathbf{X}_{1}-\mathbf{X}_{2}-\boldsymbol{X}_{3}=0} \text { and }}\}$ (iii) $U_{3}=\left\{x \in \mathbb{R}^{3} \mid x \neq u\right\}$.
(iv) $U_{4}=\operatorname{span}\{u, v\} \cup \operatorname{span}\{u+v, u-v\}$.
(i) If $u \neq 0$ we have $u \cdot u \neq 0$. But since $0 \cdot u=0$ we would get $0 \notin U_{1} \Rightarrow U_{1}$ is not a subspace.
(ii) Define the linear map

$$
\begin{aligned}
& F: \mathbb{R}^{3} \\
& \rightarrow \mathbb{R}^{2} \\
&\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \mapsto\binom{x_{1}-2 x_{2}-3 x_{3}}{x_{1}-x_{2}-x_{3}}=\left(\begin{array}{lll}
1 & -2 & -3 \\
1 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
\end{aligned}
$$

Then $U_{2}=\operatorname{Ker}(F)$ and therefore U_{2} is a subspace.
(iii) If $u \neq 0$ we have $\frac{1}{2} u \neq u$. Therefore

$$
\frac{1}{2} u \in U_{3} \text {. But 2. }\left(\frac{1}{2} u\right)=u \notin U_{3}
$$

and therefore U_{3} is not a subspace.
(iv) Since

$$
\begin{aligned}
& u=\frac{1}{2}(u+v)+\frac{1}{2}(u-v) \\
& v=\frac{1}{2}(u+v)-\frac{1}{2}(u-v)
\end{aligned}
$$

we have $u, v \in \operatorname{span}\{u+v, u-v\}$.
But alro $u+v, u-v \in \operatorname{span}\{u, v\}$

$$
\Rightarrow \quad \operatorname{span}\{u, v\}=\operatorname{span}\{u+v, u-v\}
$$

$\Rightarrow \quad U_{4}=\operatorname{span}\left\{u_{1} v\right\} \Rightarrow U_{4}$ is a subspace.
4) (12 Points) Assume we have the following data points

i	1	2	3
x_{i}	1	2	3
y_{i}	0	2	3

(i) Find the line of best fit for the above data, i.e. find $a, b \in \mathbb{R}$ such that the function $l(x)=a x+b$ minimizes the sum of squares $\sum_{i=1}^{3}\left(l\left(x_{i}\right)-y_{i}\right)^{2}$.
(ii) We define the following linear map

$$
\begin{aligned}
F: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{3} \\
\binom{x_{1}}{x_{2}} & \longmapsto\left(\begin{array}{c}
x_{1}+x_{2} \\
2 x_{1}+x_{2} \\
3 x_{1}+x_{2}
\end{array}\right)
\end{aligned}
$$

and set $V=\operatorname{im}(F)$. Determine the orthogonal projection $P_{V}(y)$ of $y=\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right)$ onto V.
(iii) Give a basis B of V and determine $\left[P_{V}(y)\right]_{B}$, where V and y are the same as in (ii). (The Key in this Exercise is to understand that (i) solves (ii) \& (iii))

$$
\begin{aligned}
& \text { (i) We need to find }\binom{a}{b} \text { such that } \\
& \left\|A\binom{a}{b}-y\right\| \text { is minimal, where } \\
& A=\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1
\end{array}\right) \text { and } y=\left(\begin{array}{l}
0 \\
2 \\
3
\end{array}\right) .
\end{aligned}
$$

For this we need to solve the normal equation $A^{\top} A\binom{a}{b}=A^{\top} y$.
We have
\rightarrow Want to solve $\left(\begin{array}{cc}14 & 6 \\ 6 & 3\end{array}\right)\binom{a}{b}=\binom{13}{5}$

$$
\begin{aligned}
& \sim \frac{1}{6}\left(\begin{array}{cc|c}
14 & 6 & 13 \\
6 & 3 & 5
\end{array}\right) \sim \underset{(14)}{\overrightarrow{-14}}\left(\begin{array}{cc|c}
14 & 6 & 13 \\
1 & \frac{1}{2} & \frac{5}{6}
\end{array}\right) \stackrel{\frac{39}{3}}{\stackrel{-35}{3}-14 \frac{5}{6}}=\frac{4}{3} \\
& \sim \operatorname{L}_{6}^{\left(\frac{1}{2}\right)}\left(\begin{array}{rr|r}
0 & -1 & \frac{4}{3} \\
1 & \frac{1}{2} & \frac{5}{6}
\end{array}\right) \sim\left(\begin{array}{cc|c}
1 & 0 & \frac{3}{2} \\
0 & 1 & -\frac{4}{3}
\end{array}\right) \\
& \Rightarrow \quad a=\frac{3}{2} \text { and } b=-\frac{4}{3}
\end{aligned}
$$

Best fittings line: $l(x)=\frac{3}{2} x-\frac{4}{3}$.
(ii) Since $[F]=A$ from (i) we get

$$
\left.\begin{array}{rl}
P_{V}(b)=A\binom{a}{b}=\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1
\end{array}\right)\binom{\frac{3}{2}}{-\frac{4}{3}}=\left(\begin{array}{c}
\frac{3}{2}-\frac{4}{3} \\
3-\frac{4}{3} \\
\frac{9}{2}-\frac{4}{3}
\end{array}\right) \\
\frac{9}{\frac{9}{6}} \frac{8}{6} \frac{\frac{8}{2}}{\frac{3}{2}-\frac{1}{3}}=\frac{1}{6} \\
\frac{9}{3}-\frac{4}{3}=\frac{5}{3} \\
\frac{57}{6} & \frac{5}{6} \\
\frac{19}{9} & \frac{19}{4} \\
6
\end{array}\right)=\frac{1}{6}\left(\begin{array}{l}
1 \\
10 \\
19
\end{array}\right)
$$

(iii) We can take $B=\left(\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right)$, since $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ are lin, independent and they span $i m(\neq)$.
Since $P_{v}(b)=A\binom{a}{b}=a\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+b\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
we have

$$
\left[P_{v}(b)\right]_{B}=\binom{a}{b}=\binom{\frac{3}{2}}{-\frac{4}{3}}
$$

