Homework 2: Matrices, Vectors & Linear Maps

Deadline: 5th November, 2019

Exercise 1. (4 Points) Let $a, b, c, d \in \mathbb{R}$ with $ad - bc \neq 0$ and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Show that $\operatorname{rk}(A) = 2$.

Exercise 2. (2+2 = 4 Points) Show that the multiplication with a matrix gives rise to a linear map, i.e. prove that the following identities hold for all $A \in \mathbb{R}^{m \times n}$, $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$:

- i) A(x+y) = Ax + Ay,
- ii) $A(\lambda x) = \lambda(Ax).$

Exercise 3. (4 Points) Let $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ be a polynomial of degree 3 with real coefficients $a_0, a_1, a_2, a_3 \in \mathbb{R}$. For this polynomial p we define the vector v_p by

$$v_p = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \mathbb{R}^4 \,.$$

Find a matrix $D \in \mathbb{R}^{4 \times 4}$, such that $v_{p'} = Dv_p$, where p' denotes the derivative of the polynomial p with respect to x. What is the rank of D?

Exercise 4. (1+1+1+1=4 Points) Which of the following functions are linear maps?

$$f_{1} : \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto e^{x},$$

$$f_{3} : \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto 3x + 2,$$

$$f_{2} : \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \longmapsto \begin{pmatrix} x_{1} + 2x_{2} \\ 2x_{1} + 4x_{2} \\ x_{1} - x_{2} \end{pmatrix},$$

$$f_{4} : \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \longmapsto \begin{pmatrix} x_{1} + 2x_{2} \\ x_{1} - x_{2} \end{pmatrix}.$$

Exercise 5. (4 Points) Show that there exist a unique linear map $T : \mathbb{R}^2 \to \mathbb{R}^3$ with the property

$$T\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}1\\2\\3\end{pmatrix}, \qquad T\begin{pmatrix}1\\-1\end{pmatrix} = \begin{pmatrix}4\\5\\6\end{pmatrix}$$

What is the value of T(x) for an arbitrary $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$? Determine the matrix of T.