Formalization of multiple Eisenstein series
Lecture series at Kyushu University 6th \& 7 th June 2023 Henrik Bachmann, Amnika Burmester
Part 1: (Formal) Multiple Eisenstein Series.
(B.) History / Motivation, Definition \& some results
(The bi setup
Part 2: The balanced setup, balanced Θb_{i}
(purmester)
Part 3: An analogue of Racinet's approach
(Burmester) to formal multiple zeta values.
Part 4: Derivations and s_{2}-action on g^{f}.
(B.)

Part 4: Derivations \& s_{2}-action on $g f$
Recall Part |: bi-setup $A^{b_{i}}=\left\{\left[\begin{array}{l}k \\ d\end{array}| | k \geq 1, d \geq 0\right\}\right.$

Definition The algebra of FMES is defined by

$$
g^{f}=\frac{\left(\mathbb{Q}\left\langle A^{b_{i}}\right\rangle, *\right)}{\left\langle\delta(\omega)-\omega\left(\omega \in \mathbb{Q}\left\langle A^{k}\right\rangle\right\rangle\right) .}
$$

- We write $G^{f}\binom{k_{1}, \ldots, k_{v}}{d_{1}, \ldots, 1}$ for the class of $\left[\begin{array}{l}k_{1}, \ldots, k_{d} \\ d_{1}, \ldots,\end{array}\right]$.
- We set $G^{f}\left(k_{1} \ldots, \ldots k_{r}\right):=G^{f}\binom{k_{1}, \ldots k_{2}}{d_{1} \ldots, d_{r}}$.

Set $G^{f_{1} 0}:=\left\langle G^{f}\left(k_{1, \ldots}, k_{r}\right) \mid k_{11 \ldots, \ldots}, k_{r 21}, v=0\right\rangle_{\mathbb{Q}}$
Notice: $g^{f_{10}}$ is a sabalgebra
Conjecture: $g^{f}=g^{f_{10}}$
(work in posers work in properer
Example: $\quad G^{f}\binom{2,1}{1,0}=G^{f}(3,1)-G^{f}(2,1,1)+G^{f}(2,2)$
4.1 CMES \& depth one

In depth one the FMES satisfy the same relations as classical Eisenstein Series and their derivatives.
More precisely: For an \mathbb{Q}-algebra R we call an algebra homomorphism $g^{f} \rightarrow R$ a realization of $g f$ in R.
Then we have:
Theorem (B.-Burmester, 2022) There exists a realization

$$
\left.G: g^{f} \longrightarrow \mathbb{Q} \| q\right]
$$

with

$$
G^{f}(k) \mapsto G(k):=-\frac{B_{k}}{2 k!}+g(k) \quad(k \geq 2)
$$

More generally: For $K>d \geq 0$

$$
\begin{aligned}
& \text { generally: For } K>d \geq 0 \\
& \qquad G^{f}(y) \mapsto \frac{(k-d-1)!}{(k-1)!}\left(q \frac{d}{d q}\right)^{d} G(k-d), \\
& \text { i.e. } \left.\quad G^{f(k-1} 1\right) \mapsto \frac{1}{k-2} q \frac{d}{d q} G(K-2)
\end{aligned}
$$

We expect that G is injective. In particular, in depth one the G^{f} satisfy the same algebraic relations as Eisenstein series, which is known:
Theorem (B.-Kühn-Matthes,2020) i) For even $K \geq 4$

$$
\frac{k+1}{2} G^{f}(k)=G^{f}\binom{k-1}{1}+\sum_{\substack{k_{1}+k_{2}=k \\ k_{1}, k_{2} \geq 2 \text { even }}} G^{f}\left(k_{1}\right) G^{f}\left(k_{2}\right)
$$

ii) For all even $k \geq 6$ we have

$$
\frac{(k+1)(k-1)(u-6)}{12} G^{f}(k)=\sum_{\substack{k_{1}+k_{2}=k \\ k_{1}, k_{2} 24 \text { even }}}\left(k_{1}-1\right)\left(k_{2}-1\right) G^{f}\left(k_{1}\right) G^{f}\left(k_{2}\right)
$$

In particular, $G^{f}(k) \in \underbrace{\mathbb{Q}\left[G^{f}(4), G^{f}(6)\right]}_{/ /} \begin{aligned} & k=8 \\ & \text { even }\end{aligned}$ formal modular forms.
bi-version of projection p seen in part 3:
Theorem (B,-Mather-v.l Itersum, 2021) unpublished note
i) There exists a suijective algebra homomorphism

$$
\pi: \quad g^{f} \rightarrow z^{f}
$$

ii) The kernel of π is the ideal generated by $G^{f}(1)$ and all elements which are not of the form

$$
G^{f}\left(\begin{array}{lll}
1 & \ldots & 1, \\
d_{1}, \ldots, \ldots & k_{1}, \ldots, k_{1} & 0
\end{array}, \ldots, 0\right) \quad s_{1} r \geq 0 .
$$

iii) $\pi\left(g^{\mathrm{f}^{1,0}}\right)=z^{f}$.
4.2 Quasimodular forms \& $s l_{2}$-algebras

Let $M=\mathbb{Q}[G(4), G(6)] \subset \widetilde{M}=\mathbb{Q}[G(2), G(4), G(6)]$ be the rings of modular \& quasimodular forms (with rat. coefficients)
Denote by M_{k}, \widetilde{M}_{k} the weight K parts.
Write $D=9 \frac{d}{d q}$.
Then we have the following well known facts:
Proposition i) We have

$$
\begin{aligned}
& D G(2)=5 G(4)-2 G(2)^{2} \\
& D G(4)=8 G(6)-14 G(2) G(4), \\
& D G(6)=\frac{120}{7} G(4)^{2}-12 G(2) G(6)
\end{aligned}
$$

and therefore $q \frac{d}{d q} \tilde{\mu}_{k} \subset \widetilde{M}_{k+2}$.
ii) Any $f \in \widetilde{M}_{k}$ can be written uniquely as

$$
f=\sum_{j=0}^{\left\lfloor\frac{k}{2}\right\rfloor} f_{j} G(2)^{j} \quad \text { with } f_{j} \in M_{k-2 j}
$$

On π we can define two more derivations. defined on the weight graded parts by

$$
\begin{aligned}
W: \tilde{\mu}_{K} & \mapsto \tilde{\mu}_{K} \quad \text { weisht operator } \\
f & \mapsto K f \\
\delta: \tilde{M}_{K} & \rightarrow \tilde{\mu}_{k-2} \quad \begin{array}{c}
\text { "Derivative with } \\
\text { respect to } G(2)
\end{array}
\end{aligned}
$$

determined by $\delta(G(2))=-\frac{1}{2}, \quad \delta(G(4))=\delta(G(6))=0$.
Notice: $\mu=\operatorname{ker} \delta$.
Lie algebra sh:- 3-dimensional Lie algebra.

- Matrix representation $\left(\begin{array}{ll}a b \\ c & d\end{array}\right), a+b=0$ $\left.\begin{array}{c}\text { Basis: } \\ \sim H \\ \sim 1 \\ 0-1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
- A triple of operators (X, H, Y) is called sla-tiple if

$$
[H, X]=2 X, \quad[H, Y]=-2 Y, \quad[Y, X]=H .
$$

- If there operators act on an algebra A by derivations the A is called an $s l_{c}$-algebra.
Proposition: (δ, W, D) is an sh-triple $\Rightarrow \widetilde{M}$ slealsebso
4.3 Formal quasimodular forms 4 Derivations on g^{f}

Theorem (B.-v, Ittercam, 2023)
i) There exist derivations $\left(\delta^{f}, w^{f}, D^{f}\right)$ which make g^{f} into a slz-algebra.
ii) $g^{f_{0} 0}$ is a sh-rebalgebra.

Definition i) We define the formal quasimodular forms \widetilde{M}^{f} as the smallest sl2-subalsebra of g^{f} containing $G^{f}(2)$.
ii) We define the algebra of formal modular forms by $\mu^{f}:=\operatorname{Ker} \delta_{\mathrm{M}}^{\mathrm{M}}$.
Theorem (B.-v.lterrum) i) $\widetilde{M}^{f} \cong \widetilde{M}$
ii) $\mu^{f} \cong M$.

The derivations are given as follows:

Proposition (B.-Burmester) G is differential alg. ham.
$\delta^{f}(\ldots)=$ sum of 5 derivations on $(\mathbb{Q}(A), *)$, which (by marie) commute with 6

Remark: - We define these derivations on $(\mathbb{Q})<A \geqslant, *)$ and show that the commute with σ
They seem to be unique with that

- There seem to be also deviations of negative odd weight.
- On $g^{f_{1} 0}$ we have: (view G^{f} ar a map $)$
we b' $z_{k} \mapsto G^{f}(u)$

$$
D^{f}\left(G^{f}(w)\right)=G^{f}\left(z_{2} * w-z_{2} \Perp w\right)
$$

$$
\begin{aligned}
& \delta^{f}\left(G^{f}\left(k_{1,}, k_{v}\right)\right)=-\frac{1}{2} \mathbb{1}_{k_{1}=2} G^{f}\left(k_{2, \ldots,}, k_{v}\right) \\
& +\frac{1}{4} \mathbb{1}_{k_{1}=u_{n}=1} G^{f}\left(k_{3, \ldots,}, u_{r}\right) \\
& \mathbb{1}_{p}=\left\{\begin{array}{l}
\mathrm{P} P \mathrm{pm} \\
1 \\
\mathrm{c} / \mathrm{m}
\end{array}\right. \\
& +\frac{1}{2} \sum_{j=1}^{v-1} \mathbb{1}_{\substack{k_{j=1} \\
k_{j+1}+1}} G^{f}\left(k_{1, \ldots,}, k_{j-1}, k_{j+1}-1, \ldots, k_{v}\right) \\
& -\frac{1}{2} \sum_{j=2}^{v} \mathbb{1}_{\substack{k_{j}=1 \\
k_{j-1}, 1}} G^{f}\left(k_{1, \ldots, 1}, k_{j-1}-1, k_{j+1, \ldots,} k_{r}\right)
\end{aligned}
$$

Summary:

$$
\begin{array}{r}
A=\left\{\left[\begin{array}{l}
k \\
d
\end{array}| |_{d=2}^{k 2}\right\}\right. \\
d
\end{array} \quad B=\left\{b_{x} \mid k=0\right\}
$$

