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(1) Multiple zeta values

Definition
Forki > 2, ko, ..., k. > 1 define the multiple zeta value (MZV)

1
C(kl,...,k‘r): E ﬁER
my>e>mp>0 M 7 M

By 7 we denote its depth and k1 + - - - -+ K, will be called its weight.
o Z:Q-algebra of MZVs

MZVs satisfy the double shuffle relations, e.g. for k1, ko > 2 we have

C(k1) - C(k2) = ((k1, k) + C(ka, k1) + ((k1 + k2)

5 (R +(120) comrr—a.

Jj=2

1/36



(2) Multiple Eisenstein series - Definition

Let 7 € Hl. We define on ZT + 7 the order > for two lattice points M1 T + 11, MaoT + Ny € Z1T + Z by

miT +ny = maT +ng & (mg > mg) or (M = mgandng > na).

Definition
Forintegers k1 > 3, ko, ..., k. > 2, we define the multiple Eisenstein series by
G 1
kla---vkr(T) = Z ﬁ
A== Ap =0 711 i
N E€ELTHTL
and we denote the (Q-vector space spanned them by (abs = absolutely convergent)

gabs — <Gk:1,,..,kr ’ r>0,k1 >3, kg,.... k> 2>Q o

The space £ is an (Q-algebra, since we can express the product by the harmonic product formula, e.g.

G4(T) . Gg(’]’) = G473(7') + G3,4(T) + G7(T) .
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(2) Multiple Eisenstein series - Fourier expansion

Definition
For k1, ..., kr > 1 we define the g-series g(k1, . .., kr) € Q[[¢]] by

Z ny ! nyr! T
glk, . k) = D gmaniebmn
mi>-->m,>0 (kl - ]‘) (kr 1)

N1,y.eeyfy >0
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(2) Multiple Eisenstein series - Fourier expansion

Definition
For k1, ..., kr > 1 we define the g-series g(k1, . .., kr) € Q[[¢]] by

Z ny'” g 4ot
ok, k) = T et
m1>-->me>0 (k1 — 1)t (kr — 1!

N1,y.eeyfy >0

Theorem (Gangl-Kaneko-Zagier 2006 (r = 2), B. 2012 (r > 2))

The multiple Eisenstein series lew,kr (7’) have a Fourier expansion of the form

le,,..,kr (7') — C(k’l, ce kr) + Z anq" (q — e27rir)

and they can be written explicitly as a 2 [27Ti]-linear combination of g-analogues of multiple zeta values g. In
particular, a, € Z|[2mi].
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(2) Multiple Eisenstein series - Fourier expansion

Theorem (Gangl-Kaneko-Zagier 2006 (1 = 2), B. 2012 ( > 2))

The multiple Eisenstein series le,_,’kT (7‘) have a Fourier expansion of the form

Gy, o (T) = (K1, .. ) + Z ang” (g =e¥™)

n>0

and they can be written explicitly as a Z[27Ti]—linear combination of g-analogues of multiple zeta values g. In
particular, a,, € Z[2mi].

Examples

Gi(7) = (k) + (=2m0)*g(k),

Gs2(q) = ¢(3,2) + 3¢(3)(=2m1)?9(2) + 2¢(2)(=2mi)*9(3) + (—270)°¢(3,2) .
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(2) Multiple Eisenstein series - Extended definitions

There are different ways to extend the definition of Gy, . . tok1,..., k. >1
@ Formal double zeta space realization Gr, s (Gangl-Kaneko-Zagier, 2006)

!
le ’ sz + (6k1 2+ 67‘32 2) M = Gk?l ko + sz k1 + Gk1+k2
2 0k2) 5 T, ey T O ,
kitko—1 ] 1 j .
> ((kl - 1) - <k2 — 1)> Gjhitha—js (ki +k223).

Jj=2
@ Shuffle regularized multiple Eisenstein series G,ﬁ kT(B.-Tasaka, 2017).
@ Harmonic regularized multiple Eisenstein series Gzl k‘r(B" 2019 + €). This gives a possible definition of
an algebra & = <G;;l ke | 7> 1,k1,..., k. > 1)q fitting into our picture.

Observation

@ No version of these objects satisfy the double shuffle relations for all indices/weights.
@ The derivative is always somewhere as an extra term.

@ What is the "correct” family of relations for multiple Eisenstein series (and their derivatives)?
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Multiple Eisenstein series

1 —2mi)k & n
Gy, (T) = Z RS Gi(r) = ((k) + ﬁ Zak—l(”)q
A== Ap=0 71 U n=1
X €L L

G4(7) - G3(1) = Gy 3(7) + G34(7) + G7(7) 750

Gs.2(q) = ¢(3,2) + 3¢(3)(—2mi)*g(2) + 2¢(2)(—2mi)3g(3) + (—2mi)°g(3,2)

MzV Clkr,... k) €R aMzVv glkr,..., k) € Q[lq]]

C(2,3) +¢(3,2) + C(5), 9(2)9(3) = 9(2,3) + 9(3,2) + 9(5) ~ 750(3)

o~
=
®
N
~
=
w
&
Il

C2)¢B) =<(2,3) +3¢(3,2) + 6(4, 1) 9D9(3) = 9(2:3) +39(3,2) + 64, 1) — 390 + 44(3).



- Alphabet

Define the alphabet A by

([ e}

On QA we define the product ¢ for k1, ko > 1 and di, do > 0 by

o)l = vl
d1 d2 dl + d2 .

This gives a commutative non-unital Q-algebra (QA, ©).

6/36



(3) Formal MES - Quasi-shuffle product

Definition
Define the quasi-shuffle product * on Q(A) as the Q-bilinear product, which satisfies 1 * w = w % 1 = w for
any word w € Q(A) and

aw * bv = a(w * bv) + blaw * v) + (a © b)(w * v)

for any letters a, b € A and words w, v € Q(A).

Proposition
(Q(A), ) is a commutative Q-algebra.
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- Quasi-shuffle product

e Forki,...,kr >1,dy,...,d, > 0we use the following notation to write words in Q(A):

ki,.. kel R k,
di,....d.| "~ |di| " |d |’
o weight: k1 + -+ k. +dy +---+d,

@ depths: r

In smallest depths the quasi-shuffle product is given by

[kl] {i@} [kh k2] [kz, k1:| [kil + kﬂ

|70 = + + ,

dq do dy,d2 do, dy dy + do

dq do, d3 dy,da, ds3 do,dy,ds3 da, ds3, dy di +do,d3 di,ds +d3|’
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- Generating series of words

We define in depth 77 > 1 by the following formal power series in Q(A)[[ X1, Y1, ..., X, Y]]
X1, X, R T L
2A ’ =y Xprtoo X
Yi,...,Y, e di,...,d, dq! d,!
dindr S0

With this the quasi-shuffle product in smallest depths reads

X X.
2 X1 5 Xo 9 X1, X5 Y X2, X4 n Y1+1Y2) - Y1+2Y2)
Y Ys Y1,Ys Yo, Y1 X1 —Xo '
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- Conjugation of Young diagrams
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- Conjugation of Young diagrams

The conjugation of a Young diagram with X1Y7 + - - - + XY boxes and r stairs:
Vit +Y,

conjugate

—_ 12 :

X17"'7X7" N YI+"'+K‘7"'7YI+Y27Y1
erXT—l_X’I‘7~"7X1_X2
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(3) Formal MES - Swap = Conjugation of the variables in the gen. series

Definition

We define the swap as the linear map o : Q(A) — Q(A) by o(1) = 1 and for > 1 on the generators of

Q(A) by
- (m<X17---,Xr>> o Ql<Y1+~--+Yr,---,Y1+Y2,Y1>
,...,Y: ' X Xe1— X, ., X1 —-X0)

where 0 is applied coefficient-wise on the left, i.e. U( [51”?] ) is defined as the coefficient of

_ Y dq dp
Xfl Lo Xkt 4T );, on the right-hand side.

() R S A
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(3) Formal MES - Definition

Define S as the ideal in (Q(A), *) generated by all 0 (w) — w forw € Q(A), i.e.

S=(o(w) —w|weQ(A)g*Q(A).

Definition
The algebra of formal multiple Eisenstein series is defined by

gf - Q<A>/S

and we denote the class of a word [Si”g:] by G(Zi”s:)
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- Generating series

We obtain a commutative Q-algebra (gf, *) where each element is swap invariant. We write

6(X1,...,Xr> -y G<k1,...,k>Xk11 XkT_le v
Yi,....Y, w s \did Tody) T,
dl?"')dTZO

Since the formal multiple Eisenstein series are swap invariant and their product is given by * we have in particular
X, Y]
& =6 ),
Y X1
®<X1, XQ) B 6( i+, )
Y1, Y, X0, X1 - Xo)’

X e
Qj(Xl) § 05<X2> _ 95(X1’X2> n (’5<X2’X1> . ®(Y1+1Y2) - ®(Y1+2Y2) .

Yi Ys Y1,Ys Yo, Y1 X1 —Xo
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- The derivation O

Let 0 : (QA,¢) — (QA, o) be the derivation defined for k > 1, d > 0 by

() =+li)

This gives a derivation on Q(A> (with respect to the concatenation product), defined by

ki,... k. - ki, ki+1,... Kk,
a 9 ) — k 9 )y Vg ) I )
(i) B oLl et
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(3) Formal MES - The derivation 0

e Ois aderivation on (Q(A), *).

@ The derivation 0 commutes with the swap, i.e. 9o = 0.

'is a derivation on (G', *).
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(3) Formal MES - sly-action

There exist a unique derivation d on (Q(A), *) such that
@ 0 commutes with 0.

@ The triple (6, W, 0) satisfies the commutation relations of an slo-triple, i.e.
[W,0] =20, [W,0]=-20, [0,0]=W,

[kl,

where W is the weight operator, multiplying a word ] by its weight

ki+...+k+di+...+d,.

This would imply an sls-action on gf. In depth one this derivation seems to be given by

k 1 1
DG<d> =d- G( _1> —§5k+d,27

which correspond to the classical derivation for quasi-modular forms (the derivative with respect to G).
Forany 7 > 1 we have explicit (conjectured) formulas for 0 G (kl’ N ST) (See bonus slide for the 1 = 2 case)
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(3) Formal MES - Double shuffle relations

On Q(A) we can define another product LLI by w LU v = o (o (w) * o(v)) for w, v € Q(A). For any
f,g€ G wehave fig— fxg=0.

For k1, ko > 1,d1,ds > 0 we have
Ky ko k1, ko ko, k1 ky + ko
G G = G G G
(d1> <d2> (dl;dZ) - <d27d1> * (d1 + d2)

i () e () v o)

li+la=k1+ko
e1+ex=di+da

di!ds! (k1 + ko — 2) <k1 + Ky — 1>
4+ G ,
(dy +dg +1)! ki—1 di +dy+1

where we sum over all [1,l3 > 1and e1, es > 0 in the second expression

The special case d1 = dy = 0is similar to the double shuffle relations of MZV.
17/36



Most of the relations we will obtain are among (3, where the bottom entries are zero. For shorter notation we will
denote these for k1, ...,k > 1 by

(R
by by = G ().

Instead of * we will just write products of (3 (i.e. this will not denote the concatenation of words)

Example

G(2) G(3) = G(2,3) + G(3,2) + G(5)

. G(2,3)+3G(3,2)+6G(4,1)+3G(‘11>.

Compare this to the previous example of multiple zeta values. Also notice: 3 G (‘11) =0 G(S).
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(3) Formal MES - Consequences of the double shuffle relations

Theorem (B.-van Ittersum-Matthes 2021+)
Forall k1, ko > 1 with k = k1 + ko > 4 even we have

% ((kl,;]@) - (—1)’“) G(k) =k§ ((kk_l]__l 1) - (kl;:l) —5j,k1> G(j) G(k - j)

Jj=2

Jeven

1 k—3 kE—3 k-1
+§<(k1_1>+<k2_1>+(5k1,1+(5k2,1>G< . )

Proof sketch:
@ Define an action of the group ring Z[Gla(7Z)] on the generating series in depth two.
@ Above equality follows by describing the double shuffle relations in terms of this action together with some
identities in Z[Gla(Z)].

(See bonus slides for details)
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(3) Formal MES - Recursive formulas for formal Eisenstein series

Corollary

@ Foreven k > 4 we have

E+1

" aw) = G(k - 1) + Y GGk

1
ki1+ko=k
k1,k2>2 even

o Foralleven k > 6 we have

(k+1)(k—1)(k—6)
12

Gk)= Y (k1 —1)(k2—1) G(k1) G(k2).

k1+ko=k
k1,k2>4 even

Example

84 50 )
T3 G G®) + £ GO
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(3) Formal MES - An analogue of Eulers relation

Notice that for k > 3 we have riz G(kIl) =0G(k—2)=G'(k-2).

Corollary

o Form > 1 we have G(2m) € Q[G(2), G'(2), G"(2)] = Q[G(2), G(4), G(6)] and

B2m

G@m) = =350

(—24 G(2))™ + terms with G/(Q) and G”(Q) .

e Form > 2wehave G(2m) € Q[G(4), G(6)].

Compare the first part with the formula by Euler for Riemann zeta values: (2m) = —% (—24¢(2))™.

Example
1
G) = § G2 + 3 G'(2),
6

qﬁ+£em@m+%gmy
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-The subspace &/

E=Q+ (Gk1,... . k) |7 > 1k, k> 1) C G

By the definition of the quasi-shuffle product, it is easy to see that (E7, *) is a subalgebra of (G, ).
Applying O to the generators of £ gives

.. 1
O(Gki,. .. ky Zk G(kl’ kf...ok)'

Proposition (B.-van litersum 2021+)

EVis closed under 0.
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(3) Formal MES - The subspace &'

E=Q+ (Gk1,... . k) |7 > 1k, k> 1) C G

By the definition of the quasi-shuffle product, it is easy to see that (E7, *) is a subalgebra of (G, ).
Applying O to the generators of £ gives

O(Gki,. .. ky Zk G<k1"' oK ;rl ; k)

Proposition (B.-van litersum 2021+)

EVis closed under 0.

Conjecture (B. 2015)

We have EF = GF.
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(4) Formal MZV - Motivation

What are the "constant terms" of formal multiple Eisenstein series? I

To define formal cusp forms, we want to determine the projection onto the constant term of formal multiple
Eisenstein series.

This leads to the question of which relations are additionally satisfied for MZV compared to MES.
This will give a definition of formal multiple zeta values.

The following construction is motivated/inspired by a conjectural construction of combinatorial multiple
Eisenstein series together with their behavior as ¢ — 1.
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(4) Formal MZV - The ideal [N

We define the following two subsets of the alphabet A

o {fnaf. o {[]iens)

With this we define the following ideal in (Q(A), ) generated by the set A*\ (A!)*(Ag)*
N = (A*\(Al)*(AO)*)Q<A> ,

The elements in A*\ (A')*(Ag)* are exactly those elements which are not of the form

Lo Lkt ke
di,...,ds,0,...,0]"
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(4) Formal MZV - Definition

Definition

The algebra of formal multiple zeta values is defined by

29 .

We denote the canonical projection by
7:G — 2

This map can be seen as the formal version of the "projection onto the constant term". We refer to 7 as the
formal constant term map.

Claim: The ideal [V captures the additional relations satisfied by multiple zeta values, which are not satisfied by
multiple Eisenstein series.
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(4) Formal MZV - Definition

Proposition (B.-van Ittersum-Matthes 2021+)

The map 7|¢j EF — ZFis surjective.

Definition

For k1, ..., k. > 1 we define the formal multiple zeta value Cf(kil, ooy k) by

Tk, k) =7(Gk, ... k).

Proposition

We have 9GT C ker ().
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(4) Formal MZV - Some relations

Applying the formal constant term map to the previously proven results yields the following:

Corollary

o (Double shuffle relations in depth two) For k1, ko > 1 we have

(k1) (T (k) = (T (v, ko) + ¢ (K, k) + (T (R + k2)

— Z ((]l;l : 11) + (1112 : 11)> CM(lh, 1) + Ok 11,.2C7(2) .

l1+lo=Fk1+k2

In particular we obtain the relation ¢¥(3) = ¢7(2, 1) by taking k1 = 1, ko = 2.

o (Euler relation) For m > 1 we have

diem) =~ (<2402)"

27/36



(4) Formal MZV - Extended double shuffle relations

Theorem (B.-van Ittersum-Matthes 2021+)
The formal multiple zeta values satisfy exactly the extended double shuffle relations.

@ Our formal multiple zeta values are isomorphic (after switching to the shuffle regularization) to the classical
definition of formal multiple zeta values (Racinet).

@ Thereis a 1:1 correspondence between objects satisfying the extended double shuffle relations and the

objects satisfying the relations in 2.

28/36



t§) Formal (quasi) modular forms - Definition

In contrast to the analytic case, we start by defining formal quasi-modular forms before formal modular forms.

Definition
We define the algebra of formal quasi-modular forms va as the smallest subalgebra of gf which satisfies the
following two conditions

o G(2) e M.

o M is closed under 8. )

29/36



@ Formal (quasi) modular forms - Basic facts

o Wehave M = Q[G(2), G(4), G(6)] = Q[G(2),G'(2), G"(2)].
@ The Ramanujan differential equations are satisfied:

G'(2) =5G(4) —2G(2)?,

G'(4) =8G(6) —14G(2) G(4),

G'(6) = 370 G(4)% - 12G(2) G(6) .

@ The Chazy equation is satisfied

G"(2)4+24G(2)G"(2) —36G/(2)2 =0.

k+1 k-1
5 Gk = G( . ) + > G(k1)Glka).
ki1+ko=k
k1,k2>2even 30/36



@ Formal (quasi) modular forms - formal modular forms & cusp forms

Definition

o The algebra of formal modular forms M is defined as the subalgebra of GI generated by all G (k) with

k > 4 even. (Alternative definition: MT = kerDM';ﬁ)

@ We define the algebra of formal cusp forms by ST = ker | M-

The first example of a non-zero formal cusp form appears in weight 12 and we write
AN = 2400 - 6! - G(4)® —420- 7! - G(6)?.
Proposition
o We have MT = Q[G(4), G(6)] and M}, = QG(k) ® S].
o We have AT € 8], and DA = —24 G(2) AT,

43%& =48G(2)2G/(2)% +32G(2)° — 32G(2)3 G"(2) — 24 G(2) G'(2) G"(2) — G"(2)?.
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Work in progress/Outlook

There are more aspects of formal multiple Eisenstein series;
@ Connection to the formal double zeta space of Gangl, Kaneko & Zagier. (see bonus slides)
@ Rankin-Cohen brackets as a consequence of the sls-action on M.

@ A formal version of "vanishing order at 100" by considering the kernels of

a:gf—>gf/Na7 (aZl)

@ Miller basis, Dimension formulas.

Not clear: How to formalize other important structures, such as Hecke operators ?
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Happy 10t birthday Kansai MZV Meeting!
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(6) Realizations - Definition

Definition

Let A be a (differential) Q-algebra. A realization of G' in A is an (differential) algebra homomorphism

0: ¢ — A,

o A = RR: Multiple zeta values (derivation = zero map).

A = Q: Rational solution to extended double shuffle.

A = Q[[g]]: Combinatorial multiple Eisenstein series (derivation = q%).

o A = O(H): ("Analytical") multiple Eisenstein series (derivation = (QWi)%).

33/36



(6) Realizations - Multiple zeta values |

Theorem (B.-van Ittersum-Matthes 2021+)

For any field A of characteristic zero, there exist a realization of Qf in A, which factors through 7.

@ This follows from the fact that we know that for any field A of characteristic zero, there exists a solution to
the extended double shuffle relations.

o For A = R these are given, for example, by (harmonic regularized) multiple zeta values.

o For A = QQ, there is no explicit construction known so far for depth > 4.
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(6) Realizations - Multiple zeta values I

Definition
Forki,...kr > 1,d1,...,d, > 0 define the ¢-series

di k1— —
g kiy..., kr _ my'nyt 1 mf’"n’ﬁ’ 1qm1n1+,_,+mmr
di,...,d, Z (ky — 1) 7 (ke — 1) '

mi>-->me>0
ni,...,np>0

Theorem (B.-van Ittersum 2021+)

The following gives a realization of gf in R

. ) ) 1 1— 1+ +kp+dy+--+dr ) ’
¥ G(dl,...,dr>'_>qbn%( 9 Ndy,....d.)

where lim:;_)l is a "(harmonic) regularized limit". This realization factors through 7 and we have

(,O(G(kl, . .,kr)) = C*(l{tl, .. .,kr) .
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(6) Realizations - Combinatorial MES

X1\ Y X1, X2\ Yi+Y, Y
®(Y1> N ®(X1>’ ®<Y1,Y2> ®<X2,X1 —X2)’

®<X1)Q5(X2> _ 6(X1,X2> n ®<X27X1> n 6(1/1)2}/2) - 6(1/1)-%5/2) .

Y; Y, Y,Ys Yo, Yy X =X

Theorem (B.-Kiihn-Matthes 2021+, B.-Burmester 2021 +)

There exist power series (’5(};11) ) @()%’i,(;) € Q[[g]][[X1, X2, Y1, Ya]] which satisfy the above equations and

where the coefficients of @(}?1) are given by (derivatives of) Eisenstein series. (See bonus slides)

@ This gives combinatorial proofs of the classical identities for quasi-modular forms.

@ There exists a construction for depth > 3, which conjecturally gives a realization of gf. See the talkslides
of Annika Burmesters talk "Combinatorial multiple Eisenstein series" at the JENTE Seminar
(https://sites.google.com/view/jente-seminar/home).
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(6) Bonus - The derivation 0 in depth 1 and 2

1 ki—1] 1
—d _ =
0 |:d1] ! [dl — 1_ 26k1+d1’2
k1, ko -1k 1 ko —1] ko 1 ko
0 —d Ls —d 50
[dl,dg] [dl 1 dJ T 5% ([dl tdy) T [dl by -1 k2| g+ dy
Fike—1] 1 b= 1 ky 1 Fy
d _ 15 d
- 2[d1,d2—1] 2 k2’1<[d1+d2] * 2[d1+d2—1})+ 50k [d +d2]

1 k1 1
- §5k2+d2, |:d :| + - 6k1+k’2+d1+d27
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(6) Bonus - Formal double zeta space

In 2006 Gangl, Kaneko and Zagier introduced for £ > 1 the formal double zeta space in weight & as

Dy = (Zi Zies P | It bz = e e 2 g /

where they divide out the following relations for k1, kg > 1

thkz = Zkl,kz + Zkz,/ﬁ + Zk1+k2

li—1 li—1 (1)
— A .
2 ((kl - 1) " (k2 - 1)) otz

l1+la=k1+k2
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(6) Bonus - Formal double zeta space

Forall k > 1 the following gives a Q-linear map Dj, — G/

Zy, — G(k) — 6.2 G(2),

1 k k ko +1
Zry o — G(k1,k2) + 5 (5k2,1G( 11) — Oky 1 G( 12) +5k1,2G( 21 )) ;

L ky +1 ki + 1
Pi by — G(k1) Gk2) + 5 (%,2(1( E )+5k2,2G< r )) '
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(6) Bonus - Action of GIQ(Z) -1

The double shuffle relations for formal multiple Eisenstein series in lowest depth are

P<X1’ X2> = 95(X1’ Xz) + QS(XQ’ X1> + 6(Yl)-(‘r-lYQ) B ®(Y1§-2Y2)

Y1,Ys Y1,Ys Yo, Y1 X1 —Xo @
X1+X X1+X.
_ & X1+ X9, Xo & X1+ X2, Xy &( 1;;1 ?) — & Y ?)
Y1,Yo -1 Y2, Y1 - Yo Y1 -Y

with P()}(,i’}),(;) = Qﬁ()f,ll) @();22) Define the action of the group ring Z[Gl2(Z)] on the formal Laurent series
L= QA((X1, X2, Y1, Y5)) fory = (Z Z) € Gly(Z) and R € L by
R X1, X0 —R aXi+ bXs,c X1 +dXs
P\ v1,Ys ) T \det(7)(dY: — cYa), det(7)(—bY; + aYa)

and then extend it linearly to all elements in Z[Gla(Z)].
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(6) Bonus - Action of Gly(Z) - 2

Now define the following elements in Gla(Z)
(-1 0 (0 1 5= -1 0
= o -1)> 1o/ " \o 1)
11 0 -1 1 -1
(1) s=0W) =)

The equation (2) then becomesP = & | (1 +¢) + R* = &| T'(1 + €) + R™ with
X1+X2) _ ®(X1+X2)

_ 6(1/1)-?1/2) - (’5(5/1{21/2) o X1, X5 _ &( Yi Ya
X1 — X2 Yl - Yé

}/17Y2

X1, X
R*< 17 2

For A = eUe€ we have

G|(1-0)=P|1-68)(1+A—-SA%) — (R*—RY | (T %)) |(1+A+ A?).
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Considering the coefficients in above Lemma gives the Theorem on products of G.



(6) Bonus - Combinatorial MES explicit

Theorem (B.-Kiihn-Matthes 2021+, B.-Burmester 2021 +)

The following series are swap invariant and their coefficients satisfy the quasi-shuffle product
X1 - Xl Xl
Qj(Yl) _ﬂ(n) +9<Y1> ’
X1, Xo X1, X X1 — Xo X1 1 X1
(4 =p -8 g -5
Y1, Y, Y1,Y, Y, Y1+Y 27\ + Y,

Xo X1 X1 — X5 Xo X1, X5
+B<Y2>9<Y1) +ﬁ( Y1 >9<Y1 +Y2> +9<Y1,Y2 ) '

Here [3 is a rational realization of Zf, such that the depth one objects are exactly the constant terms of the
Eisenstein series G, and

,
X, Xy = eXinitYim; omjn;
9 vy, v q .
Tyeny Xy "
my>->mp>0 j=1
N1y, p >0
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