Formal multiple Eisenstein series and formal multiple zeta values

Henrik Bachmann

名古屋大学



j.w. J.W. van Ittersum & Nils Matthes, Annika Burmester, Ulf Kühn & Nils Matthes

第54回関西多重ゼータ研究会,5月29日2021

www.henrikbachmann.com

Formal world

Formal multiple Eisenstein series $G\binom{k_1,\ldots,k_r}{d_1,\ldots,d_r}$

$$igotaure \mathcal{G}$$

 $k_1,\ldots k_r > 1$

"Real world"

partial derivates of Multiple

Eisenstein series

$$k_1, \dots k_r \ge 1$$

Multiple Eisenstein series

$$G(k_1,\ldots,k_r)$$

 $k_1 > 3, k_2, \dots, k_r > 2$

 $G(k_1,\ldots,k_r) := G\begin{pmatrix} k_1,\ldots,k_r \\ 0,\ldots,0 \end{pmatrix}$

$$\mathcal{E}^{\mathfrak{f},\mathsf{a}}$$

$$_{1,\dots,k_{r}}(\tau)=$$

$$\int$$

Modular forms

Formal modular forms

From formal multiple Eisenstein series to formal multiple zeta values

$$\mathcal{Z}^{\mathfrak{f}}=rac{\mathcal{G}^{\mathfrak{f}}}{N}$$

N: "relations satisfied by MZV which are not satisfied by MES"

1 Multiple zeta values

Definition

For $k_1 \geq 2, k_2, \dots, k_r \geq 1$ define the **multiple zeta value** (MZV)

$$\zeta(k_1,\ldots,k_r) = \sum_{m_1 > \cdots > m_r > 0} \frac{1}{m_1^{k_1} \cdots m_r^{k_r}} \in \mathbb{R}.$$

By r we denote its **depth** and $k_1 + \cdots + k_r$ will be called its **weight**.

 \bullet \mathcal{Z} : \mathbb{O} -algebra of MZVs

MZVs satisfy the **double shuffle relations**, e.g. for $k_1, k_2 \geq 2$ we have

$$\zeta(k_1) \cdot \zeta(k_2) = \zeta(k_1, k_2) + \zeta(k_2, k_1) + \zeta(k_1 + k_2)$$

$$= \sum_{j=2}^{k_1 + k_2 - 1} \left(\binom{j-1}{k_1 - 1} + \binom{j-1}{k_2 - 1} \right) \zeta(j, k_1 + k_2 - j).$$

2 Multiple Eisenstein series - Definition

Let $au\in\mathbb{H}$. We define on $\mathbb{Z} au+\mathbb{Z}$ the **order** \succ for two lattice points $m_1 au+n_1, m_2 au+n_2\in\mathbb{Z} au+\mathbb{Z}$ by $m_1 au+n_1\succ m_2 au+n_2$: $\Leftrightarrow \quad (m_1>m_2) \text{ or } (m_1=m_2 \text{ and } n_1>n_2)$.

Definition

For integers $k_1 \geq 3, k_2, \dots, k_r \geq 2$, we define the **multiple Eisenstein series** by

$$\mathbb{G}_{k_1,\dots,k_r}(\tau) = \sum_{\substack{\lambda_1 \succ \dots \succ \lambda_r \succ 0 \\ \lambda_i \in \mathbb{Z}\tau + \mathbb{Z}}} \frac{1}{\lambda_1^{k_1} \cdots \lambda_r^{k_r}}$$

and we denote the \mathbb{Q} -vector space spanned them by

(abs = absolutely convergent)

$$\mathcal{E}^{\mathsf{abs}} = \langle \mathbb{G}_{k_1, \dots, k_r} \mid r \geq 0, k_1 \geq 3, k_2, \dots, k_r \geq 2 \rangle_{\mathbb{O}}.$$

The space $\mathcal E$ is an $\mathbb Q$ -algebra, since we can express the product by the **harmonic product** formula, e.g.

$$\mathbb{G}_4(\tau) \cdot \mathbb{G}_3(\tau) = \mathbb{G}_{4,3}(\tau) + \mathbb{G}_{3,4}(\tau) + \mathbb{G}_7(\tau).$$

Definition

For $k_1,\ldots,k_r\geq 1$ we define the q-series $g(k_1,\ldots,k_r)\in\mathbb{Q}[[q]]$ by

$$g(k_1,\ldots,k_r) = \sum_{\substack{m_1 > \cdots > m_r > 0 \\ n_1 = n_r > 0}} \frac{n_1^{k_1 - 1}}{(k_1 - 1)!} \cdots \frac{n_r^{k_r - 1}}{(k_r - 1)!} q^{m_1 n_1 + \cdots + m_r n_r}.$$

2 Multiple Eisenstein series - Fourier expansion

Definition

For $k_1,\ldots,k_r\geq 1$ we define the q-series $g(k_1,\ldots,k_r)\in\mathbb{Q}[[q]]$ by

$$g(k_1,\ldots,k_r) = \sum_{\substack{m_1 > \cdots > m_r > 0 \\ n_1 > \cdots > n_r > 0}} \frac{n_1^{k_1-1}}{(k_1-1)!} \cdots \frac{n_r^{k_r-1}}{(k_r-1)!} q^{m_1n_1+\cdots+m_rn_r}.$$

Theorem (Gangl-Kaneko-Zagier 2006 (r=2), B. 2012 ($r\geq 2$))

The multiple Eisenstein series $\mathbb{G}_{k_1,\dots,k_r}(au)$ have a Fourier expansion of the form

$$\mathbb{G}_{k_1,\dots,k_r}(\tau) = \zeta(k_1,\dots,k_r) + \sum_{n>0} a_n q^n \qquad (q = e^{2\pi i \tau})$$

and they can be written explicitly as a $\mathcal{Z}[2\pi i]$ -linear combination of q-analogues of multiple zeta values g. In particular, $a_n \in \mathcal{Z}[2\pi i]$.

Theorem (Gangl-Kaneko-Zagier 2006 (r=2), B. 2012 (r>2))

The multiple Eisenstein series $\mathbb{G}_{k_1,\ldots,k_r}(au)$ have a Fourier expansion of the form

$$\mathbb{G}_{k_1,\dots,k_r}(\tau) = \zeta(k_1,\dots,k_r) + \sum_{n>0} a_n q^n \qquad (q = e^{2\pi i \tau})$$

and they can be written explicitly as a $\mathbb{Z}[2\pi i]$ -linear combination of q-analogues of multiple zeta values g. In particular, $a_n \in \mathbb{Z}[2\pi i]$.

Examples

$$\mathbb{G}_k(\tau) = \zeta(k) + (-2\pi i)^k g(k) ,$$

$$\mathbb{G}_{3,2}(q) = \zeta(3,2) + 3\zeta(3)(-2\pi i)^2 g(2) + 2\zeta(2)(-2\pi i)^3 g(3) + (-2\pi i)^5 g(3,2).$$

There are different ways to extend the definition of $\mathbb{G}_{k_1,\ldots,k_r}$ to $k_1,\ldots,k_r\geq 1$

ullet Formal double zeta space realization $\mathbb{G}_{r,s}$ (Gangl-Kaneko-Zagier, 2006)

$$\mathbb{G}_{k_1} \cdot \mathbb{G}_{k_2} + (\delta_{k_1,2} + \delta_{k_2,2}) \frac{\mathbb{G}'_{k_1 + k_2 - 2}}{2(k_1 + k_2 - 2)} = \mathbb{G}_{k_1,k_2} + \mathbb{G}_{k_2,k_1} + \mathbb{G}_{k_1 + k_2}$$

$$= \sum_{j=2}^{k_1 + k_2 - 1} \left(\binom{j-1}{k_1 - 1} + \binom{j-1}{k_2 - 1} \right) \mathbb{G}_{j,k_1 + k_2 - j}, \quad (k_1 + k_2 \ge 3).$$

- Shuffle regularized multiple Eisenstein series $\mathbb{G}_{k_1,\ldots,k_r}^{\sqcup}$ (B.-Tasaka, 2017).
- Harmonic regularized multiple Eisenstein series $\mathbb{G}_{k_1,\ldots,k_r}^*$ (B., 2019 + ϵ). This gives a possible definition of an algebra $\mathcal{E} = \langle \mathbb{G}_{k_1,\ldots,k_r}^* \mid r \geq 1, k_1,\ldots,k_r \geq 1 \rangle_{\mathbb{Q}}$ fitting into our picture.

Observation

- No version of these objects satisfy the double shuffle relations for all indices/weights.
- The derivative is always somewhere as an extra term.
- What is the "correct" family of relations for multiple Eisenstein series (and their derivatives)?

Multiple Eisenstein series

$$\mathbb{G}_{k_1,\ldots,k_r}(au) = \sum_{\substack{k_1,\ldots,k_r}} \frac{1}{\sqrt{k_1-\sqrt{k_1-k_2}}} \mathbb{G}_k(au) =$$

$$_{\overline{\mathbb{G}_{k}}}$$
 $\mathbb{G}_{k}(au)=$

$$\mathbb{G}_{k_1,...,k_r}(au) = \sum_{\substack{n \geq 0 \ \lambda_1^{k_1} \cdots \lambda_r^{k_r}}} rac{1}{\lambda_1^{k_1} \cdots \lambda_r^{k_r}}$$
 $\mathbb{G}_k(au)$ =

$$\mathbb{G}_{k_1,\dots,k_r}(\tau) = \sum_{\substack{\lambda_1 \succ \dots \succ \lambda_r \succ 0 \\ \lambda_i \in \mathbb{Z}\tau + \mathbb{Z}}} \frac{1}{\lambda_1^{k_1} \cdots \lambda_r^{k_r}} \qquad \mathbb{G}_k(\tau) :$$

$$\mathbb{G}_4(\tau) \cdot \mathbb{G}_3(\tau) = \mathbb{G}_{4,3}(\tau) + \mathbb{G}_{3,4}(\tau) + \mathbb{G}_7(\tau)$$

$$\mathbb{G}_k(\tau) = \zeta(k) + \frac{(-2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$

$$+(-2\pi i)^5g(3,2)$$

$$\mathbb{G}_{3,2}(q) = \zeta(3,2) + 3\zeta(3)(-2\pi i)^2 g(2) + 2\zeta(2)(-2\pi i)^3 g(3) + (-2\pi i)^5 g(3,2)$$

MZV
$$\zeta(k_1, \dots, k_r) \in \mathbb{R}$$

$$\zeta(2)\zeta(3) = \zeta(2,3) + \zeta(3,2) + \zeta(5),$$

$$\zeta(2)\zeta(3) = \zeta(2,3) + 3\zeta(3,2) + 6\zeta(4,1)$$

$$\mathsf{gMZV}$$
 $q(k_1,\ldots,k_r) \in \mathbb{O}[[q]]$

qMZV
$$g(k_1,\ldots,k_r)\in\mathbb{Q}[[q]]$$

$$g(2)g(3) = g(2,3) + g(3,2) + g(5) - \frac{1}{12}g(3),$$

 $\mathbb{G}_{k_1,\dots,k_r}(\tau) = \zeta(k_1,\dots,k_r) + \sum a_n q^n$

$$g(2)g(3) = g(2,3) + g(3,2) + g(5) - \frac{1}{12}g(3),$$

$$g(2)g(3) = g(2,3) + 3g(3,2) + 6g(4,1) - 3g(4) + q\frac{d}{da}g(3).$$

Define the alphabet A by

$$A = \left\{ \begin{bmatrix} k \\ d \end{bmatrix} \mid k \ge 1, \ d \ge 0 \right\} .$$

On $\mathbb{Q}A$ we define the product \diamond for $k_1,k_2\geq 1$ and $d_1,d_2\geq 0$ by

$$\begin{bmatrix} k_1 \\ d_1 \end{bmatrix} \diamond \begin{bmatrix} k_2 \\ d_2 \end{bmatrix} = \begin{bmatrix} k_1 + k_2 \\ d_1 + d_2 \end{bmatrix}.$$

This gives a commutative non-unital \mathbb{Q} -algebra $(\mathbb{Q}A, \diamond)$.

3 Formal MES - Quasi-shuffle product

Definition

Define the **quasi-shuffle product** * on $\mathbb{Q}\langle A\rangle$ as the \mathbb{Q} -bilinear product, which satisfies 1*w=w*1=w for any word $w\in\mathbb{Q}\langle A\rangle$ and

$$aw * bv = a(w * bv) + b(aw * v) + (a \diamond b)(w * v)$$

for any letters $a,b\in A$ and words $w,v\in \mathbb{Q}\langle A\rangle$.

Proposition

 $(\mathbb{Q}\langle A \rangle, *)$ is a commutative \mathbb{Q} -algebra.

• For $k_1, \ldots, k_r \geq 1, d_1, \ldots, d_r \geq 0$ we use the following notation to write words in $\mathbb{Q}\langle A \rangle$:

$$\begin{bmatrix} k_1, \dots, k_r \\ d_1, \dots, d_r \end{bmatrix} := \begin{bmatrix} k_1 \\ d_1 \end{bmatrix} \dots \begin{bmatrix} k_r \\ d_r \end{bmatrix}.$$

- weight: $k_1 + \cdots + k_r + d_1 + \cdots + d_r$
- ullet depths: r

In smallest depths the quasi-shuffle product is given by

$$\begin{bmatrix} k_1 \\ d_1 \end{bmatrix} * \begin{bmatrix} k_2 \\ d_2 \end{bmatrix} = \begin{bmatrix} k_1, k_2 \\ d_1, d_2 \end{bmatrix} + \begin{bmatrix} k_2, k_1 \\ d_2, d_1 \end{bmatrix} + \begin{bmatrix} k_1 + k_2 \\ d_1 + d_2 \end{bmatrix},$$

$$\begin{bmatrix} k_1 \\ d_1 \end{bmatrix} * \begin{bmatrix} k_2, k_3 \\ d_2, d_3 \end{bmatrix} = \begin{bmatrix} k_1, k_2, k_3 \\ d_1, d_2, d_3 \end{bmatrix} + \begin{bmatrix} k_2, k_1, k_3 \\ d_2, d_1, d_3 \end{bmatrix} + \begin{bmatrix} k_2, k_3, k_1 \\ d_2, d_3, d_1 \end{bmatrix} + \begin{bmatrix} k_1 + k_2, k_3 \\ d_1 + d_2, d_3 \end{bmatrix} + \begin{bmatrix} k_1, k_2 + k_3 \\ d_1, d_2 + d_3 \end{bmatrix}.$$

We define in depth $r \geq 1$ by the following formal power series in $\mathbb{Q}\langle A \rangle[[X_1,Y_1,\ldots,X_r,Y_r]]$

$$\mathfrak{A}\binom{X_1,\ldots,X_r}{Y_1,\ldots,Y_r} := \sum_{\substack{k_1,\ldots,k_r \geq 1 \\ d_1,\ldots,d_r > 0}} \begin{bmatrix} k_1,\ldots,k_r \\ d_1,\ldots,d_r \end{bmatrix} X_1^{k_1-1} \ldots X_r^{k_r-1} \frac{Y_1^{d_1}}{d_1!} \ldots \frac{Y_r^{d_r}}{d_r!} ...$$

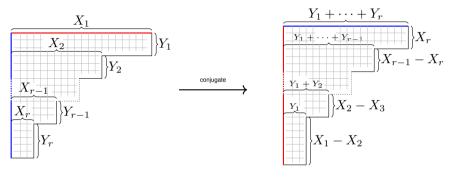
With this the quasi-shuffle product in smallest depths reads

$$\mathfrak{A}\binom{X_1}{Y_1} * \mathfrak{A}\binom{X_2}{Y_2} = \mathfrak{A}\binom{X_1, X_2}{Y_1, Y_2} + \mathfrak{A}\binom{X_2, X_1}{Y_2, Y_1} + \frac{\mathfrak{A}\binom{X_1}{Y_1 + Y_2} - \mathfrak{A}\binom{X_2}{Y_1 + Y_2}}{X_1 - X_2}.$$



(3) Formal MES - Conjugation of Young diagrams

The conjugation of a Young diagram with $X_1Y_1+\cdots+X_rY_r$ boxes and r stairs:



$$\begin{pmatrix} X_1, \dots, X_r \\ Y_1, \dots, Y_r \end{pmatrix} \longmapsto \begin{pmatrix} Y_1 + \dots + Y_r, \dots, Y_1 + Y_2, Y_1 \\ X_r, X_{r-1} - X_r, \dots, X_1 - X_2 \end{pmatrix}$$

Definition

We define the **swap** as the linear map $\sigma:\mathbb{Q}\langle A\rangle\to\mathbb{Q}\langle A\rangle$ by $\sigma(1)=1$ and for $r\geq 1$ on the generators of $\mathbb{Q}\langle A\rangle$ by

$$\sigma\left(\mathfrak{A}\begin{pmatrix} X_1,\ldots,X_r\\ Y_1,\ldots,Y_r \end{pmatrix}\right) := \mathfrak{A}\begin{pmatrix} Y_1+\cdots+Y_r,\ldots,Y_1+Y_2,Y_1\\ X_r,X_{r-1}-X_r,\ldots,X_1-X_2 \end{pmatrix},$$

where σ is applied coefficient-wise on the left, i.e. $\sigma({[k_1,...,k_r] \brack d_1,...,d_r})$ is defined as the coefficient of

$$X_1^{k_1-1}\dots X_r^{k_r-1} rac{Y_1^{d_1}}{d_1!}\dots rac{Y_r^{d_r}}{d_r!}$$
 on the right-hand side.

$$\sigma\left(\begin{bmatrix} k \\ d \end{bmatrix}\right) = \frac{d!}{(k-1)!} \begin{bmatrix} d+1 \\ k-1 \end{bmatrix}, \quad (k \ge 1, d \ge 0).$$

3 Formal MES - Definition

Define S as the ideal in $(\mathbb{Q}\langle A\rangle,*)$ generated by all $\sigma(w)-w$ for $w\in\mathbb{Q}\langle A\rangle$, i.e.

$$S = \langle \sigma(w) - w \mid w \in \mathbb{Q}\langle A \rangle \rangle_{\mathbb{Q}} * \mathbb{Q}\langle A \rangle.$$

Definition

The algebra of formal multiple Eisenstein series is defined by

$$\mathcal{G}^{\mathfrak{f}} = \mathbb{Q}\langle A \rangle_{S}$$

and we denote the class of a word $\begin{bmatrix} k_1,\dots,k_r \\ d_1,\dots,d_r \end{bmatrix}$ by $G\binom{k_1,\dots,k_r}{d_1,\dots,d_r}$.

We obtain a commutative \mathbb{Q} -algebra $(\mathcal{G}^{\mathfrak{f}},*)$, where each element is swap invariant. We write

$$\mathfrak{G}\binom{X_1, \dots, X_r}{Y_1, \dots, Y_r} := \sum_{\substack{k_1, \dots, k_r \ge 1 \\ d_1, \dots, d_r \ge 0}} G\binom{k_1, \dots, k_r}{d_1, \dots, d_r} X_1^{k_1 - 1} \dots X_r^{k_r - 1} \frac{Y_1^{d_1}}{d_1!} \dots \frac{Y_r^{d_r}}{d_r!}.$$

Since the formal multiple Eisenstein series are swap invariant and their product is given by * we have in particular

$$\begin{split} \mathfrak{G} \binom{X_1}{Y_1} &= \mathfrak{G} \binom{Y_1}{X_1}, \\ \mathfrak{G} \binom{X_1, X_2}{Y_1, Y_2} &= \mathfrak{G} \binom{Y_1 + Y_1, Y_1}{X_2, X_1 - X_2}, \\ \mathfrak{G} \binom{X_1}{Y_1} * \mathfrak{G} \binom{X_2}{Y_2} &= \mathfrak{G} \binom{X_1, X_2}{Y_1, Y_2} + \mathfrak{G} \binom{X_2, X_1}{Y_2, Y_1} + \frac{\mathfrak{G} \binom{X_1}{Y_1 + Y_2} - \mathfrak{G} \binom{X_2}{Y_1 + Y_2}}{X_1 - X_2}. \end{split}$$

Let $\partial:(\mathbb{Q}A,\diamond) \to (\mathbb{Q}A,\diamond)$ be the derivation defined for $k\geq 1, d\geq 0$ by

$$\partial \left(\begin{bmatrix} k \\ d \end{bmatrix} \right) = k \begin{bmatrix} k+1 \\ d+1 \end{bmatrix}.$$

This gives a derivation on $\mathbb{Q}\langle A \rangle$ (with respect to the concatenation product), defined by

$$\partial \left(\begin{bmatrix} k_1, \dots, k_r \\ d_1, \dots, d_r \end{bmatrix} \right) = \sum_{j=1}^r k_j \begin{bmatrix} k_1, \dots, k_j + 1, \dots, k_r \\ d_1, \dots, d_j + 1, \dots, d_r \end{bmatrix}.$$

Lemma

- ullet ∂ is a derivation on $(\mathbb{Q}\langle A \rangle, *)$.
- The derivation ∂ commutes with the swap, i.e. $\partial \sigma = \sigma \partial$.

Theorem

 ∂ is a derivation on $(\mathcal{G}^{\mathfrak{f}},*)$.

$$\partial \left(G \binom{k_1, \dots, k_r}{d_1, \dots, d_r} \right) = \sum_{j=1}^r k_j G \binom{k_1, \dots, k_j + 1, \dots, k_r}{d_1, \dots, d_j + 1, \dots, d_r}.$$

(3) Formal MES - \mathfrak{sl}_2 -action

Conjecture

There exist a unique derivation \mathfrak{d} on $(\mathbb{Q}\langle A \rangle, *)$ such that

- \mathfrak{d} commutes with σ .
- The triple $(\partial, W, \mathfrak{d})$ satisfies the commutation relations of an \mathfrak{sl}_2 -triple, i.e.

$$[W,\partial]=2\partial,\quad [W,\mathfrak{d}]=-2\mathfrak{d}, \qquad [\mathfrak{d},\partial]=W\,,$$

where W is the weight operator, multiplying a word $\begin{bmatrix} k_1, \dots, k_r \\ d_1, \dots, d_r \end{bmatrix}$ by its weight $k_1 + \dots + k_r + d_1 + \dots + d_r$

This would imply an \mathfrak{sl}_2 -action on $\mathcal{G}^{\mathfrak{f}}$. In depth one this derivation seems to be given by

$$\mathfrak{d} G \binom{k}{d} = d \cdot G \binom{k-1}{d-1} - \frac{1}{2} \delta_{k+d,2},$$

which correspond to the classical derivation for quasi-modular forms (the derivative with respect to G_2).

For any $r \geq 1$ we have explicit (conjectured) formulas for $\mathfrak{d} G^{(k_1,\ldots,k_r)}_{d_1,\ldots,d_r}$. (See bonus slide for the r=2 case)

(3) Formal MES - Double shuffle relations

On $\mathbb{Q}\langle A\rangle$ we can define another product $\sqcup\sqcup$ by $w\sqcup v=\sigma(\sigma(w)*\sigma(v))$ for $w,v\in\mathbb{Q}\langle A\rangle$. For any $f,g\in\mathcal{G}^{\mathfrak{f}}$ we have $f\sqcup\sqcup g-f*g=0$.

Proposition

For $k_1, k_2 \ge 1, d_1, d_2 \ge 0$ we have

$$\begin{split} \mathbf{G} \begin{pmatrix} k_1 \\ d_1 \end{pmatrix} \mathbf{G} \begin{pmatrix} k_2 \\ d_2 \end{pmatrix} &= & \mathbf{G} \begin{pmatrix} k_1, k_2 \\ d_1, d_2 \end{pmatrix} + \mathbf{G} \begin{pmatrix} k_2, k_1 \\ d_2, d_1 \end{pmatrix} + \mathbf{G} \begin{pmatrix} k_1 + k_2 \\ d_1 + d_2 \end{pmatrix} \\ &= \sum_{\substack{l_1 + l_2 = k_1 + k_2 \\ e_1 + e_2 = d_1 + d_2}} \left(\begin{pmatrix} l_1 - 1 \\ k_1 - 1 \end{pmatrix} \begin{pmatrix} d_1 \\ e_1 \end{pmatrix} (-1)^{d_1 - e_1} + \begin{pmatrix} l_1 - 1 \\ k_2 - 1 \end{pmatrix} \begin{pmatrix} d_2 \\ e_1 \end{pmatrix} (-1)^{d_2 - e_1} \right) \mathbf{G} \begin{pmatrix} l_1, l_2 \\ e_1, e_2 \end{pmatrix} \\ &+ \frac{d_1! d_2!}{(d_1 + d_2 + 1)!} \begin{pmatrix} k_1 + k_2 - 2 \\ k_1 - 1 \end{pmatrix} \mathbf{G} \begin{pmatrix} k_1 + k_2 - 1 \\ d_1 + d_2 + 1 \end{pmatrix}, \end{split}$$

The special case $d_1=d_2=0$ is similar to the double shuffle relations of MZV.

where we sum over all $l_1, l_2 \geq 1$ and $e_1, e_2 \geq 0$ in the second expression

③ Formal MES - $G(k_1,\ldots,k_r)$

Most of the relations we will obtain are among G, where the bottom entries are zero. For shorter notation we will denote these for $k_1,\ldots,k_r\geq 1$ by

$$G(k_1,\ldots,k_r) := G\begin{pmatrix} k_1,\ldots,k_r \\ 0,\ldots,0 \end{pmatrix}.$$

Instead of * we will just write products of G (i.e. this will not denote the concatenation of words)

Example

$$\begin{split} G(2)\,G(3) &= \ G(2,3) + G(3,2) + G(5) \\ &= \ G(2,3) + 3\,G(3,2) + 6\,G(4,1) + 3\,G\binom{4}{1}\,. \end{split}$$

Compare this to the previous example of multiple zeta values. Also notice: $3 G\binom{4}{1} = \partial G(3)$.

Theorem (B.-van Ittersum-Matthes 2021+)

For all $k_1, k_2 \geq 1$ with $k = k_1 + k_2 \geq 4$ even we have

$$\begin{split} \frac{1}{2} \left(\binom{k_1 + k_2}{k_2} - (-1)^{k_1} \right) \mathbf{G}(k) &= \sum_{\substack{j=2\\j \text{ even}}}^{k-2} \left(\binom{k-j-1}{k_1-1} + \binom{k-j-1}{k_2-1} - \delta_{j,k_1} \right) \mathbf{G}(j) \, \mathbf{G}(k-j) \\ &+ \frac{1}{2} \left(\binom{k-3}{k_1-1} + \binom{k-3}{k_2-1} + \delta_{k_1,1} + \delta_{k_2,1} \right) \mathbf{G}\binom{k-1}{1}. \end{split}$$

Proof sketch:

- Define an action of the group ring $\mathbb{Z}[Gl_2(\mathbb{Z})]$ on the generating series in depth two.
- Above equality follows by describing the double shuffle relations in terms of this action together with some identities in $\mathbb{Z}[Gl_2(\mathbb{Z})]$.

(See bonus slides for details)

③ Formal MES - Recursive formulas for formal Eisenstein series

Corollary

ullet For even $k \geq 4$ we have

$$\frac{k+1}{2}G(k) = G\binom{k-1}{1} + \sum_{\substack{k_1+k_2=k\\k_1,k_2>2 \text{ even}}} G(k_1)G(k_2).$$

ullet For all even $k \geq 6$ we have

$$\frac{(k+1)(k-1)(k-6)}{12} G(k) = \sum_{k_1+k_2=k} (k_1-1)(k_2-1) G(k_1) G(k_2).$$

Example

$$G(8) = \frac{6}{7}G(4)^2$$
, $G(10) = \frac{10}{11}G(4)G(6)$, $G(12) = \frac{84}{143}G(4)G(8) + \frac{50}{143}G(6)^2$.

0/36

(3) Formal MES - An analogue of Eulers relation

Notice that for $k \geq 3$ we have $\frac{1}{k-2} \operatorname{G} \binom{k-1}{1} = \partial \operatorname{G} (k-2) = \operatorname{G}'(k-2)$.

Corollary

ullet For $m\geq 1$ we have $\mathrm{G}(2m)\in\mathbb{Q}[\mathrm{G}(2),\mathrm{G}'(2),\mathrm{G}''(2)]=\mathbb{Q}[\mathrm{G}(2),\mathrm{G}(4),\mathrm{G}(6)]$ and

$$G(2m) = -\frac{B_{2m}}{2(2m)!}(-24G(2))^m + \text{terms with } G'(2) \text{ and } G''(2)$$
.

ullet For $m\geq 2$ we have $\mathrm{G}(2m)\in\mathbb{Q}[\mathrm{G}(4),\mathrm{G}(6)].$

Compare the first part with the formula by Euler for Riemann zeta values: $\zeta(2m) = -\frac{B_{2m}}{2(2m)!}(-24\zeta(2))^m$.

Example

$$G(4) = \frac{2}{5} G(2)^{2} + \frac{1}{5} G'(2),$$

$$G(6) = \frac{8}{35} G(2)^{3} + \frac{6}{35} G(2) G'(2) + \frac{1}{70} G''(2).$$

${ ext{ }}{ ext{ }}{$

$$\mathcal{E}^{\mathfrak{f}} = \mathbb{Q} + \langle G(k_1, \dots, k_r) \mid r \geq 1, k_1, \dots, k_r \geq 1 \rangle_{\mathbb{Q}} \subset \mathcal{G}^{\mathfrak{f}}.$$

By the definition of the quasi-shuffle product, it is easy to see that $(\mathcal{E}^{\mathfrak{f}},*)$ is a subalgebra of $(\mathcal{G}^{\mathfrak{f}},*)$. Applying ∂ to the generators of $\mathcal{E}^{\mathfrak{f}}$ gives

$$\partial \left(G(k_1, \dots, k_r) \right) = \sum_{j=1}^r k_j G \binom{k_1, \dots, k_j + 1, \dots, k_r}{0, \dots, 1, \dots, 0}.$$

Proposition (B.-van Ittersum 2021+)

 $\mathcal{E}^{\mathfrak{f}}$ is closed under ∂ .

${ ext{ }}{ ext{ }}{$

$$\mathcal{E}^{\mathsf{f}} = \mathbb{Q} + \langle \mathsf{G}(k_1, \dots, k_r) \mid r \geq 1, k_1, \dots, k_r \geq 1 \rangle_{\mathbb{Q}} \subset \mathcal{G}^{\mathsf{f}}.$$

By the definition of the quasi-shuffle product, it is easy to see that $(\mathcal{E}^{\mathfrak{f}},*)$ is a subalgebra of $(\mathcal{G}^{\mathfrak{f}},*)$. Applying ∂ to the generators of $\mathcal{E}^{\mathfrak{f}}$ gives

$$\partial \left(G(k_1, \dots, k_r) \right) = \sum_{j=1}^r k_j G \begin{pmatrix} k_1, \dots, k_j + 1, \dots, k_r \\ 0, \dots, 1, \dots, 0 \end{pmatrix}.$$

Proposition (B.-van Ittersum 2021+)

 $\mathcal{E}^{\mathfrak{f}}$ is closed under ∂ .

Conjecture (B. 2015)

We have $\mathcal{E}^{\mathfrak{f}}=\mathcal{G}^{\mathfrak{f}}.$

4 Formal MZV - Motivation

Question

What are the "constant terms" of formal multiple Eisenstein series?

- To define formal cusp forms, we want to determine the projection onto the constant term of formal multiple
 Eisenstein series.
- This leads to the question of which relations are additionally satisfied for MZV compared to MES.
- This will give a definition of formal multiple zeta values.
- ullet The following construction is motivated/inspired by a conjectural construction of combinatorial multiple Eisenstein series together with their behavior as q o 1.

We define the following two subsets of the alphabet A

$$A_0 = \left\{ \begin{bmatrix} k \\ 0 \end{bmatrix} \mid k \ge 1 \right\}, \quad A^1 = \left\{ \begin{bmatrix} 1 \\ d \end{bmatrix} \mid d \ge 0 \right\}.$$

With this we define the following ideal in $(\mathbb{Q}\langle A \rangle, *)$ generated by the set $A^* \backslash (A^1)^* (A_0)^*$

$$N = \left(A^* \backslash (A^1)^* (A_0)^*\right)_{\mathbb{Q}\langle A \rangle} ,$$

The elements in $A^* \setminus (A^1)^* (A_0)^*$ are exactly those elements which are <u>not</u> of the form

$$\begin{bmatrix} 1, \dots, 1, k_1, \dots, k_r \\ d_1, \dots, d_s, 0, \dots, 0 \end{bmatrix}.$$

4 Formal MZV - Definition

Definition

The algebra of formal multiple zeta values is defined by

$$\mathcal{Z}^{\mathfrak{f}}=rac{\mathcal{G}^{\mathfrak{f}}}{N}$$
 .

We denote the canonical projection by

$$\pi: \mathcal{G}^{\mathfrak{f}} \longrightarrow \mathcal{Z}^{\mathfrak{f}}$$
.

This map can be seen as the formal version of the "projection onto the constant term". We refer to π as the formal constant term map.

 ${f Claim:}$ The ideal N captures the additional relations satisfied by multiple zeta values, which are not satisfied by multiple Eisenstein series.

Proposition (B.-van Ittersum-Matthes 2021+)

The map $\pi_{|\mathcal{E}^{\mathfrak{f}}}:\mathcal{E}^{\mathfrak{f}}
ightarrow\mathcal{Z}^{\mathfrak{f}}$ is surjective.

Definition

For $k_1,\ldots,k_r\geq 1$ we define the **formal multiple zeta value** $\zeta^{\mathfrak{f}}(k_1,\ldots,k_r)$ by

$$\zeta^{\mathfrak{f}}(k_1,\ldots,k_r)=\pi(\mathrm{G}(k_1,\ldots,k_r)).$$

Proposition

We have $\partial \mathcal{G}^{\mathfrak{f}} \subset \ker(\pi)$.

Applying the formal constant term map to the previously proven results yields the following:

Corollary

ullet (Double shuffle relations in depth two) For $k_1,k_2\geq 1$ we have

$$\begin{split} \zeta^{\mathfrak{f}}(k_{1})\zeta^{\mathfrak{f}}(k_{2}) &= \zeta^{\mathfrak{f}}(k_{1},k_{2}) + \zeta^{\mathfrak{f}}(k_{2},k_{1}) + \zeta^{\mathfrak{f}}(k_{1}+k_{2}) \\ &= \sum_{l_{1}+l_{2}=k_{1}+k_{2}} \left(\binom{l_{1}-1}{k_{1}-1} + \binom{l_{1}-1}{k_{2}-1} \right) \zeta^{\mathfrak{f}}(l_{1},l_{2}) + \delta_{k_{1}+k_{2},2}\zeta^{\mathfrak{f}}(2) \,. \end{split}$$

In particular we obtain the relation $\zeta^{\mathfrak{f}}(3)=\zeta^{\mathfrak{f}}(2,1)$ by taking $k_1=1,k_2=2$.

• (Euler relation) For $m \geq 1$ we have

$$\zeta^{f}(2m) = -\frac{B_{2m}}{2(2m)!} \left(-24\zeta^{f}(2)\right)^{m}.$$

4 Formal MZV - Extended double shuffle relations

Theorem (B.-van Ittersum-Matthes 2021+)

The formal multiple zeta values satisfy exactly the extended double shuffle relations.

- Our formal multiple zeta values are isomorphic (after switching to the shuffle regularization) to the classical definition of formal multiple zeta values (Racinet).
- There is a 1:1 correspondence between objects satisfying the extended double shuffle relations and the objects satisfying the relations in $\mathcal{Z}^{\mathfrak{f}}$.

In contrast to the analytic case, we start by defining formal quasi-modular forms before formal modular forms.

Definition

We define the algebra of **formal quasi-modular forms** $\widetilde{\mathcal{M}}^{\mathfrak{f}}$ as the smallest subalgebra of $\mathcal{G}^{\mathfrak{f}}$ which satisfies the following two conditions

- $G(2) \in \widetilde{\mathcal{M}}^{\mathfrak{f}}$.
- ullet $\widetilde{\mathcal{M}}^{\mathfrak{f}}$ is closed under $\partial.$

(5) Formal (quasi) modular forms - Basic facts

Proposition

- We have $\widetilde{\mathcal{M}}^{\mathfrak{f}}=\mathbb{Q}[G(2),G(4),G(6)]=\mathbb{Q}[G(2),G'(2),G''(2)].$
- The Ramanujan differential equations are satisfied:

$$G'(2) = 5 G(4) - 2 G(2)^{2},$$

$$G'(4) = 8 G(6) - 14 G(2) G(4),$$

$$G'(6) = \frac{120}{7} G(4)^{2} - 12 G(2) G(6).$$

The Chazy equation is satisfied

$$G'''(2) + 24 G(2) G''(2) - 36 G'(2)^{2} = 0.$$

$$\frac{k+1}{2} G(k) = G\binom{k-1}{1} + \sum_{\substack{k_1+k_2=k\\k_1,k_2>2 \text{ even}}} G(k_1) G(k_2).$$

(5) Formal (quasi) modular forms - formal modular forms & cusp forms

Definition

- The algebra of **formal modular forms** $\mathcal{M}^{\mathfrak{f}}$ is defined as the subalgebra of $\mathcal{G}^{\mathfrak{f}}$ generated by all G(k) with $k \geq 4$ even. (Alternative definition: $\mathcal{M}^{\mathfrak{f}} = \ker \mathfrak{d}_{|\widetilde{\mathcal{M}}^{\mathfrak{f}}})$
- ullet We define the algebra of **formal cusp forms** by $\mathcal{S}^{\mathfrak{f}}=\ker\pi_{|\mathcal{M}^{\mathfrak{f}}}.$

The first example of a non-zero formal cusp form appears in weight 12 and we write

$$\Delta^{f} = 2400 \cdot 6! \cdot G(4)^{3} - 420 \cdot 7! \cdot G(6)^{2}.$$

Proposition

- $\bullet \ \ \text{We have} \ \mathcal{M}^{\mathfrak{f}}=\mathbb{Q}[\mathrm{G}(4),\mathrm{G}(6)] \ \text{and} \ \mathcal{M}_{k}^{\mathfrak{f}}=\mathbb{Q}\,\mathrm{G}(k)\oplus\mathcal{S}_{k}^{\mathfrak{f}}.$
- We have $\Delta^{\mathfrak{f}}\in\mathcal{S}_{12}^{\mathfrak{f}}$ and $\partial\Delta^{\mathfrak{f}}=-24\,\mathrm{G}(2)\Delta^{\mathfrak{f}}.$

$$\frac{1}{432}\Delta^{f} = 48\,\mathrm{G}(2)^{2}\,\mathrm{G}'(2)^{2} + 32\,\mathrm{G}'(2)^{3} - 32\,\mathrm{G}(2)^{3}\,\mathrm{G}''(2) - 24\,\mathrm{G}(2)\,\mathrm{G}'(2)\,\mathrm{G}''(2) - \mathrm{G}''(2)^{2}\,.$$

Work in progress/Outlook

There are more aspects of formal multiple Eisenstein series;

- Connection to the formal double zeta space of Gangl, Kaneko & Zagier. (see bonus slides)
- ullet Rankin-Cohen brackets as a consequence of the \mathfrak{sl}_2 -action on $\widetilde{\mathcal{M}}^{\mathfrak{f}}.$
- ullet A formal version of "vanishing order at $i\infty$ " by considering the kernels of

$$\pi_a: \mathcal{G}^{\mathfrak{f}} \longrightarrow \mathcal{G}^{\mathfrak{f}}/N^a, \quad (a \ge 1)$$

Miller basis, Dimension formulas.

Not clear: How to formalize other important structures, such as Hecke operators?

Happy 10th birthday Kansai MZV Meeting! "Real world"

Formal world

 $G(k_1,\ldots,k_r) := G\begin{pmatrix} k_1,\ldots,k_r \\ 0,\ldots,0 \end{pmatrix}$

 $k_1,\ldots,k_r>1$

 $G(k_1,\ldots,k_r)$ $k_1 \geq 3, k_2, \dots, k_r > 2$

Formal modular forms

Formal multiple Eisenstein series

"bi" Multiple Eisenstein series

Stuffle regularized

2555

Multiple Eisenstein series $k_1,\ldots,k_r>1$

Multiple Eisenstein series

Modular forms

 $\mathbb{G}_{k_1,\dots,k_r}(\tau) = \sum_{\substack{\lambda_1 \succ \dots \succ \lambda_r \succeq 0 \\ -\frac{\sigma_r}{2} - \frac{1}{\sigma_r}}} \frac{1}{\lambda_1^{k_1} \cdots \lambda_r^{k_r}}$

Definition

Let A be a (differential) $\mathbb Q$ -algebra. A **realization of** $\mathcal G^{\mathfrak f}$ **in** A is an (differential) algebra homomorphism

$$\varphi: \mathcal{G}^{\mathfrak{f}} \longrightarrow A$$
.

- ullet $A=\mathbb{R}$: Multiple zeta values (derivation = zero map).
- \bullet $A=\mathbb{Q}$: Rational solution to extended double shuffle.
- ullet $A=\mathbb{Q}[[q]]$: Combinatorial multiple Eisenstein series (derivation = $q rac{d}{dq}$).
- ullet $A=\mathcal{O}(\mathbb{H})$: ("Analytical") multiple Eisenstein series (derivation = $(2\pi i) rac{d}{d au}$).

Theorem (B.-van Ittersum-Matthes 2021+)

For any field A of characteristic zero, there exist a realization of $\mathcal{G}^{\mathfrak{f}}$ in A, which factors through π .

- ullet This follows from the fact that we know that for any field A of characteristic zero, there exists a solution to the extended double shuffle relations.
- ullet For $A=\mathbb{R}$ these are given, for example, by (harmonic regularized) multiple zeta values.
- ullet For $A=\mathbb{Q}$, there is no explicit construction known so far for depth ≥ 4 .

6 Realizations - Multiple zeta values II

Definition

For $k_1, \ldots, k_r \ge 1, d_1, \ldots, d_r \ge 0$ define the q-series

$$g\binom{k_1,\ldots,k_r}{d_1,\ldots,d_r} = \sum_{m_1>\cdots>m_r>0} \frac{m_1^{d_1}n_1^{k_1-1}}{(k_1-1)!} \cdots \frac{m_r^{d_r}n_r^{k_r-1}}{(k_r-1)!} q^{m_1n_1+\cdots+m_rn_r}.$$

Theorem (B.-van Ittersum 2021+)

The following gives a realization of $\mathcal{G}^{\mathfrak{f}}$ in $\mathbb R$

$$\varphi: G\binom{k_1, \dots, k_r}{d_1, \dots, d_r} \longmapsto \lim_{q \to 1}^* (1-q)^{k_1 + \dots + k_r + d_1 + \dots + d_r} g\binom{k_1, \dots, k_r}{d_1, \dots, d_r},$$

where $\lim_{q \to 1}^*$ is a "(harmonic) regularized limit". This realization factors through π and we have

$$\varphi(G(k_1,\ldots,k_r))=\zeta^*(k_1,\ldots,k_r).$$

$$\begin{split} \mathfrak{G} \binom{X_1}{Y_1} &= \mathfrak{G} \binom{Y_1}{X_1}, \quad \mathfrak{G} \binom{X_1, X_2}{Y_1, Y_2} = \mathfrak{G} \binom{Y_1 + Y_1, Y_1}{X_2, X_1 - X_2}, \\ \mathfrak{G} \binom{X_1}{Y_1} \mathfrak{G} \binom{X_2}{Y_2} &= \mathfrak{G} \binom{X_1, X_2}{Y_1, Y_2} + \mathfrak{G} \binom{X_2, X_1}{Y_2, Y_1} + \frac{\mathfrak{G} \binom{X_1}{Y_1 + Y_2} - \mathfrak{G} \binom{X_2}{Y_1 + Y_2}}{X_1 - X_2} \,. \end{split}$$

Theorem (B.-Kühn-Matthes 2021+, B.-Burmester 2021+)

There exist power series $\mathfrak{G}\binom{Y_1}{X_1}$, $\mathfrak{G}\binom{X_1,X_2}{Y_1,Y_2} \in \mathbb{Q}[[q]][[X_1,X_2,Y_1,Y_2]]$ which satisfy the above equations and where the coefficients of $\mathfrak{G}\binom{Y_1}{X_1}$ are given by (derivatives of) Eisenstein series. (See bonus slides)

- This gives combinatorial proofs of the classical identities for quasi-modular forms.
- There exists a construction for depth ≥ 3 , which conjecturally gives a realization of $\mathcal{G}^{\mathfrak{f}}$. See the talkslides of Annika Burmesters talk "Combinatorial multiple Eisenstein series" at the JENTE Seminar (https://sites.google.com/view/jente-seminar/home).

$$r = 1$$

$$\mathfrak{d} \begin{bmatrix} k_1 \\ d_1 \end{bmatrix} = d_1 \begin{bmatrix} k_1 - 1 \\ d_1 - 1 \end{bmatrix} - \frac{1}{2} \delta_{k_1 + d_1, 2}$$

$$r=2$$

$$\mathfrak{d} \begin{bmatrix} k_1, k_2 \\ d_1, d_2 \end{bmatrix} = d_1 \begin{bmatrix} k_1 - 1, k_2 \\ d_1 - 1, d_2 \end{bmatrix} + \frac{1}{2} \delta_{k_1, 1} \left(\begin{bmatrix} k_2 - 1 \\ d_1 + d_2 \end{bmatrix} - d_1 \begin{bmatrix} k_2 \\ d_1 + d_2 - 1 \end{bmatrix} \right) - \frac{1}{2} \delta_{k_1, 2} \begin{bmatrix} k_2 \\ d_1 + d_2 \end{bmatrix}$$

$$+ d_2 \begin{bmatrix} k_1, k_2 - 1 \\ d_1, d_2 - 1 \end{bmatrix} - \frac{1}{2} \delta_{k_2, 1} \left(\begin{bmatrix} k_1 - 1 \\ d_1 + d_2 \end{bmatrix} + d_2 \begin{bmatrix} k_1 \\ d_1 + d_2 - 1 \end{bmatrix} \right) + \frac{1}{2} \delta_{k_2, 2} \begin{bmatrix} k_1 \\ d_1 + d_2 \end{bmatrix}$$

$$- \frac{1}{2} \delta_{k_2 + d_2, 2} \begin{bmatrix} k_1 \\ d_1 \end{bmatrix} + \frac{1}{4} \delta_{k_1 + k_2 + d_1 + d_2, 2} .$$

In 2006 Gangl, Kaneko and Zagier introduced for $k \geq 1$ the **formal double zeta space** in weight k as

$$\mathcal{D}_{k} = \left\langle Z_{k}, Z_{k_{1}, k_{2}}, P_{k_{1}, k_{2}} \mid k_{1} + k_{2} = k, k_{1}, k_{2} \geq 1 \right\rangle_{\mathbb{Q}} / \text{(1)}$$

where they divide out the following relations for $k_1, k_2 \geq 1$

$$P_{k_1,k_2} = Z_{k_1,k_2} + Z_{k_2,k_1} + Z_{k_1+k_2}$$

$$= \sum_{l_1+l_2=k_1+k_2} \left(\binom{l_1-1}{k_1-1} + \binom{l_1-1}{k_2-1} \right) Z_{l_1,l_2}.$$
(1)

Proposition

For all $k \geq 1$ the following gives a \mathbb{Q} -linear map $\mathcal{D}_k o \mathcal{G}^{\mathfrak{f}}$

$$\begin{split} Z_k &\longmapsto \operatorname{G}(k) - \delta_{k,2} \operatorname{G}(2) \,, \\ Z_{k_1,k_2} &\longmapsto \operatorname{G}(k_1,k_2) + \frac{1}{2} \left(\delta_{k_2,1} \operatorname{G} \binom{k_1}{1} - \delta_{k_1,1} \operatorname{G} \binom{k_2}{1} + \delta_{k_1,2} \operatorname{G} \binom{k_2+1}{1} \right) \,, \\ P_{k_1,k_2} &\longmapsto \operatorname{G}(k_1) \operatorname{G}(k_2) + \frac{1}{2} \left(\delta_{k_1,2} \operatorname{G} \binom{k_2+1}{1} + \delta_{k_2,2} \operatorname{G} \binom{k_1+1}{1} \right) \,. \end{split}$$

$\mbox{\Large (6)}$ Bonus - Action of $Gl_2(\mathbb{Z})$ - 1

The double shuffle relations for formal multiple Eisenstein series in lowest depth are

$$P\begin{pmatrix} X_{1}, X_{2} \\ Y_{1}, Y_{2} \end{pmatrix} = \mathfrak{G}\begin{pmatrix} X_{1}, X_{2} \\ Y_{1}, Y_{2} \end{pmatrix} + \mathfrak{G}\begin{pmatrix} X_{2}, X_{1} \\ Y_{2}, Y_{1} \end{pmatrix} + \frac{\mathfrak{G}\begin{pmatrix} X_{1} \\ Y_{1} + Y_{2} \end{pmatrix} - \mathfrak{G}\begin{pmatrix} X_{2} \\ Y_{1} + Y_{2} \end{pmatrix}}{X_{1} - X_{2}}$$

$$= \mathfrak{G}\begin{pmatrix} X_{1} + X_{2}, X_{2} \\ Y_{1}, Y_{2} - Y_{1} \end{pmatrix} + \mathfrak{G}\begin{pmatrix} X_{1} + X_{2}, X_{1} \\ Y_{2}, Y_{1} - Y_{2} \end{pmatrix} + \frac{\mathfrak{G}\begin{pmatrix} X_{1} + X_{2} \\ Y_{1} \end{pmatrix} - \mathfrak{G}\begin{pmatrix} X_{1} + X_{2} \\ Y_{2} \end{pmatrix}}{Y_{1} - Y_{2}}$$
(2)

with $P(X_1, X_2) = \mathfrak{G}(X_1) \mathfrak{G}(X_2)$. Define the action of the group ring $\mathbb{Z}[Gl_2(\mathbb{Z})]$ on the formal Laurent series

$$\mathcal{L}=\mathbb{Q}\langle A
angle((X_1,X_2,Y_1,Y_2))$$
 for $\gamma=egin{pmatrix} a&b\c&d \end{pmatrix}\in\mathrm{Gl}_2(\mathbb{Z})$ and $R\in\mathcal{L}$ by

$$R_{|\gamma} {X_1, X_2 \choose Y_1, Y_2} = R {aX_1 + bX_2, cX_1 + dX_2 \choose \det(\gamma)(dY_1 - cY_2), \det(\gamma)(-bY_1 + aY_2)}$$

and then extend it linearly to all elements in $\mathbb{Z}[Gl_2(\mathbb{Z})]$.

(6) Bonus - Action of $\mathrm{Gl}_2(\mathbb{Z})$ - 2

Now define the following elements in $\mathrm{Gl}_2(\mathbb{Z})$

$$\sigma = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \epsilon = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \delta = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}.$$

The equation (2) then becomes $P=\mathfrak{G}\mid (1+\epsilon)+R^*=\mathfrak{G}\mid T(1+\epsilon)+R^{\sqcup\sqcup}$ with

$$R^*\binom{X_1,X_2}{Y_1,Y_2} = \frac{\mathfrak{G}\binom{X_1}{Y_1+Y_2} - \mathfrak{G}\binom{X_2}{Y_1+Y_2}}{X_1-X_2}, \quad R^{\sqcup}\binom{X_1,X_2}{Y_1,Y_2} = \frac{\mathfrak{G}\binom{X_1+X_2}{Y_1} - \mathfrak{G}\binom{X_1+X_2}{Y_2}}{Y_1-Y_2}.$$

Lemma

For $A = \epsilon U \epsilon$ we have

$$\mathfrak{G} \mid (1 - \sigma) = P \mid (1 - \delta)(1 + A - SA^2) - (R^* - R^{\sqcup \sqcup} \mid (T^{-1}\epsilon)) \mid (1 + A + A^2).$$

Considering the coefficients in above Lemma gives the Theorem on products of G.

Theorem (B.-Kühn-Matthes 2021+, B.-Burmester 2021+)

The following series are swap invariant and their coefficients satisfy the quasi-shuffle product

$$\begin{split} \mathfrak{G} \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix} &= \beta \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix} + \mathfrak{g} \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix}, \\ \mathfrak{G} \begin{pmatrix} X_1, X_2 \\ Y_1, Y_2 \end{pmatrix} &= \beta \begin{pmatrix} X_1, X_2 \\ Y_1, Y_2 \end{pmatrix} - \beta \begin{pmatrix} X_1 - X_2 \\ Y_2 \end{pmatrix} \mathfrak{g} \begin{pmatrix} X_1 \\ Y_1 + Y_2 \end{pmatrix} - \frac{1}{2} \mathfrak{g} \begin{pmatrix} X_1 \\ Y_1 + Y_2 \end{pmatrix} \\ &+ \beta \begin{pmatrix} X_2 \\ Y_2 \end{pmatrix} \mathfrak{g} \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix} + \beta \begin{pmatrix} X_1 - X_2 \\ Y_1 \end{pmatrix} \mathfrak{g} \begin{pmatrix} X_2 \\ Y_1 + Y_2 \end{pmatrix} + \mathfrak{g} \begin{pmatrix} X_1, X_2 \\ Y_1, Y_2 \end{pmatrix}. \end{split}$$

Here β is a rational realization of $\mathcal{Z}^{\mathfrak{f}}$, such that the depth one objects are exactly the constant terms of the Eisenstein series G_k and

$$\mathfrak{g}\begin{pmatrix} X_1, \dots, X_r \\ Y_1, \dots, Y_r \end{pmatrix} = \sum_{\substack{m_1 > \dots > m_r > 0 \\ n_1 = n}} \prod_{j=1}^r e^{X_j n_j + Y_j m_j} q^{m_j n_j}.$$