Hamburgers, Numbers and infinite Series

JSPS Science Dialogue

Henrik Bachmann Nagoya University

Plan of this Talk

Hamburgers, Germany and Me

Numbers

Real numbers, Algebraic numbers, Rational numbers and Transcendental numbers

Infinite Series

- Finite & Infinite Series
- Geometric series and Riemann zeta values
- Multiple zeta values

Mathematics & Research

What I like about mathematics

What is this? これは何ですか?

Das ist ein Hamburger

This is a hamburger

... and this?

Das ist ein Hamburger

This is someone from Hamburg

About me

- In 1985 I was born in **Hamburg, Germany.**
- I have an older **sister** who studied Japanese. 姉妹
- From 2006 to 2016 I did my Bachelor, Master and Doctor in Mathematics at Hamburg University.
- Since April 2016 I am a JSPS Post-doctoral Fellow in Nagoya.
- I am interested in Number theory.

数論

Where is Germany?

Where is Hamburg?

Hamburg

Old name: Hammaburg

Hamma = Something at a river

Burg = Castle

Moin Moin!

Special phrase from Hamburg for こんにちわ

What does this have to do with

A lot of people moved from Germany to the USA.

There the people from Hamburg sold a north German food: A piece of meat inside a small bread.

Later the American people called these breads "Hamburger".

What do you know about Germany?

Germany & Japan

† 82.175.684 357.375 km²

† 127.110.047 377.835 km²

- 1. Berlin (3.520.031)
- 2. Hamburg (1.787.408)
- 3. München (1.450.381)
- 4. Köln (1.060.582)

- 1. Tokyo (9.375.104)
- 2. Yokohama (3.732.616)
- 3. Osaka (2.705.262)
- 4. Nagoya (2.302.696)

• • •

...

Mathematics overview

What is number theory (数論)?

- Number theory is a branch of pure mathematics devoted primarily to the study of the integers (numbers).
- It is sometimes called "The Queen of Mathematics".

- There are several different areas inside of number theory.
 - Classical number theory (Prime numbers, divisors,...)
 - Analytic number theory (Use functions to study numbers)
 - Algebraic number theory (Use algebra to study numbers)
 - Diophantine geometry (Use geometry to study numbers)
 -

Numbers (数)

What types of numbers do you know? Where/When do they appear?

1. Counting:
$$x = \text{number of people in this room}$$

$$x = ?$$

2. Ratios:
$$x = remaining part of this pizza:$$

$$x = ?$$

根

$$x^2 - 2 = 0$$

$$x = ?$$

$$x = ?$$

Numbers (数)

What types of numbers do you know? Where/When do they appear?

1. Counting: x = number of people in this room

2. Ratios: x = remaining part of this pizza:

$$x = \frac{7}{8}$$

3. Finding the root of a polynomial:

多項式

$$x^2 - 2 = 0$$

$$x = \pm \sqrt{2}$$

4. Circumference of a circle: 円周率

$$x = \pi$$

 $x \approx 3.1415926535...$

Overview of the real numbers (実数)

Real numbers: All numbers with a decimal expansion.

Algebraic numbers:

Numbers which are zeros of Polynomials with rational coefficients.

Rational numbers:

Numbers which can be $\frac{p}{q}$ written as a fraction q

Integers & Natural numbers: Numbers which

arise from counting, adding and subtracting.

Transcendental numbers (超越数)

 Real numbers which are not algebraic are called transcendental numbers.

 There are a lot of transcendental numbers.

• In 1882 F. Lindemann proved that π is transcendental.

• This means you can **not** find a polynomial P(x) with π as its root, i.e. $P(\pi) = 0$.

Transcendental numbers (超越数)

Exercise:

Suppose c is rational and A and B are transcendental.

- i) Is cA transcendental?
- ii) Is A² transcendental?
- iii) Is A+B transcendental?

Transcendental numbers (超越数)

 There are a lot of numbers where we do not know if they are algebraic or transcendental.

To introduce some of them I first need to explain infinite series.

- A series is a sum of numbers.
- The symbol \sum is used for short notation

Example:

1) The sum of the first 100 natural numbers:

$$1 + 2 + 3 + 4 + \dots + 100 = \sum_{n=1}^{100} n$$

2) The sum of the first six odd numbers

$$1 + 3 + 5 + 7 + 9 + 11 = \sum_{n=1}^{6} (2n - 1)$$

In general if $a \leq b$ are integers and f(n) is a term depending on n, we write

$$\sum_{n=a}^{b} f(n) = f(a) + f(a+1) + \dots + f(b)$$

Exercise: Write the following sums with the symbol \sum

1)
$$1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4}$$

2)
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2}$$

In general if $a \leq b$ are integers and f(n) is a term depending on n, we write

$$\sum_{n=a}^{b} f(n) = f(a) + f(a+1) + \dots + f(b)$$

Exercise: Write the following sums with the symbol \sum

1)
$$1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} = \sum_{n=0}^4 \frac{1}{2^n}$$

2)
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} = \sum_{n=1}^{5} \frac{1}{n^2}$$

What happens if we calculate
$$\sum_{n=0}^{b} \frac{1}{2^n}$$
 for different b?

$$b = 0: \quad \sum_{n=0}^{0} \frac{1}{2^n} = 1$$

$$b = 1:$$
 $\sum_{n=0}^{1} \frac{1}{2^n} = 1 + \frac{1}{2} = \frac{3}{2} = 1.5$

$$b = 2$$
: $\sum_{n=0}^{2} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{2^2} = 1.75$

$$b = 3:$$
 $\sum_{n=0}^{3} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} = 1.875$

$$b = 10:$$

$$\sum_{n=0}^{10} \frac{1}{2^n} = 1 + \frac{1}{2} + \dots + \frac{1}{2^{10}} = 1.9990234375$$

We see that this sum approaches 2 and we write $\sum_{n=0}^{\infty} \frac{1}{2^n} = 2$

$$\sum_{n=0}^{\infty} \frac{1}{2^n} = 2$$

This sum is called an infinite Series.

In general one can proof (not hard!) the following:

For all real numbers q with -1 < q < 1 we have

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q} \,.$$

So in the case $q = \frac{1}{2}$ this sum equals $\frac{1}{1-\frac{1}{2}} = 2$.

This sum is called the **geometric series**.

幾何級数

But what happens if we calculate $\sum_{1}^{b} \frac{1}{n^2}$ for different b?

$$b=1: \sum_{n=1}^{1} \frac{1}{n^2} = 1$$

$$b = 2$$
: $\sum_{n=1}^{2} \frac{1}{n^2} = 1 + \frac{1}{2^2} = 1.25$

$$b = 3:$$
 $\sum_{n=1}^{3} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} = \frac{49}{36} = 1.361111....$

$$b = 10:$$

$$\sum_{n=1}^{10} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \dots + \frac{1}{10^2} = 1.5497677311665406904\dots$$

$$b = 100:$$

$$\sum_{1}^{100} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \dots + \frac{1}{100^2} = 1.6349839001848928651\dots$$

$$b = 1000:$$

$$\sum_{1000}^{1000} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \dots + \frac{1}{1000^2} = 1.6439345666815598031\dots$$

What is
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 ??

Infinite Series (無限級数)

This problem was first solved by L. Euler in 1735

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6} \approx 1.64493\dots$$

He gave a formula for all sums of this type with **even** exponents.

Example:

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{\pi^4}{90}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^6} = 1 + \frac{1}{2^6} + \frac{1}{3^6} + \frac{1}{4^6} + \dots = \frac{\pi^6}{945}$$

More general Euler considered for arbitrary k = 2,3,4,5,... the numbers

$$\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k} = 1 + \frac{1}{2^k} + \frac{1}{3^k} + \frac{1}{4^k} + \dots$$

which are called Riemann zeta values.

$$\zeta(2) = \frac{\pi^2}{6} , \zeta(4) = \frac{\pi^5}{90} , \zeta(6) = \frac{\pi^6}{945} .$$

What about $\zeta(3)$, $\zeta(5)$, $\zeta(7)$, ... ?

Bernhard Riemann

Due to Euler we know that for \exp k the values $\zeta(k)$ are transcendental.

For **odd** k nobody knows where to put $\zeta(k)$ in this picture.... 奇数

For **odd** k nobody knows where to put $\zeta(k)$ in this picture.... 奇数

Multiple zeta values (多重ゼータ値)

- In my research I consider a generalization of the Riemann zeta values.
- For this we need to explain a new notation for infinite series:

$$\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k} = \sum_{n>0} \frac{1}{n^k}$$

Sum over the numbers n=1,2,... = Sum over numbers n with n>0

Multiple zeta values (多重ゼータ値)

• The **double zeta values** are defined by 二重ゼータ値

$$\zeta(k_1, k_2) = \sum_{0 < n_1 < n_2} \frac{1}{n_1^{k_1} \cdot n_2^{k_2}} = \frac{1}{1^{k_1} \cdot 2^{k_2}} + \frac{1}{1^{k_1} \cdot 3^{k_2}} + \frac{1}{2^{k_1} \cdot 3^{k_2}} + \frac{1}{1^{k_1} \cdot 4^{k_2}} + \frac{1}{2^{k_1} \cdot 4^{k_2}} + \frac{1}{2^{k_1} \cdot 4^{k_2}} + \dots$$

$$0 < 1 < 2 \qquad 0 < 1 < 3 \qquad 0 < 2 < 3 \qquad 0 < 1 < 4 \qquad 0 < 2 < 4$$

Sum over all numbers n_1 and n_2 with $0 < n_1 < n_2$

The multiple zeta values are then defined by

$$\zeta(k_1, \dots, k_r) = \sum_{0 < n_1 < \dots < n_r} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}}$$

Multiple zeta values (多重ゼータ値)

These numbers satisfy a lot of linear relations

Examples:
$$\zeta(3) = \zeta(1,2)$$

$$\frac{5197}{691}\zeta(12) = 168\zeta(7,5) + 150\zeta(5,7) + 28\zeta(3,9)$$

$$\zeta(\underbrace{2,...,2}_{n}) = \frac{\pi^{2n}}{(2n+1)!}$$

One of the goals is to understand all these relations

Mathematics

Why should you study Mathematics?

- It is fun!
- Japan is a good place to study mathematics!

I like Mathematics because....

- ...there are no limits.
- ...there is just one "right" and "wrong".
- ...it is international.

Imagine you study biology and you are interested in cats and elephants.

How to decide the topic for your thesis?

You can not write a thesis on both since there are no catephants!

- In Mathematics there are no such limits.
- I was also interested in two different topics (Multiple zeta values and Eisenstein series).

My Master thesis & PhD Thesis was devoted to Multiple Eisenstein series which combined both topics.

- There are endless open problems in mathematics
- You can come up with your own questions and objects
- There is a lot of freedom since you do not need to think about an application before you start working on a problem.

Mathematics – International

- During my research I was able to travel a lot.
- I met a lot of people from different countries.

Usually everybody in mathematical research can speak (simple) English! LEARN ENGLISH!

Where to start....?

- Study mathematics!
- Also try to read English textbooks or research papers!

 (www.arxiv.org)

Other nice books to start:

Fermat's Last Theorem - Simon Singh Story about a nice mathematical problem, which was solved 1994. This book is also available in Japanese.

Proofs from THE BOOK - Martin Aigner, Günter M. Ziegler

A collection of beautiful mathematical problems and proofs.

Thank you for your attention!

ありがとうございます

