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1© MZV - Definition

Definition

For k1 ≥ 2, k2, . . . , kr ≥ 1 we define the multiple zeta value (MZV)

ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 · · ·m

kr
r

∈ R .

By r we denote its depth and k1 + · · ·+ kr will be called its weight.

Z : Q-algebra of MZVs

Zk : Q-vector space of MZVs of weight k.

MZVs can also be written as iterated integrals, e.g.

ζ(2, 3) =

∫ 1

0

dt1
t1

∫ t1

0

dt2
1− t2

∫ t2

0

dt3
t3

∫ t3

0

dt4
t4

∫ t4

0

dt5
1− t5

.
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1© MZV - Harmonic & shuffle product

There are two different ways to express the product of MZV in terms of MZV.

Harmonic product (coming from the definition as iterated sums)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =
∑
m>0

1

mk1

∑
n>0

1

nk2

=
∑

m>n>0

1

mk1nk2
+

∑
n>m>0

1

mk1nk2
+

∑
m=n>0

1

mk1+k2

= ζ(k1, k2) + ζ(k2, k1) + ζ(k1 + k2) .

Shuffle product (coming from the expression as iterated integrals)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =

k1+k2−1∑
j=2

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
ζ(j, k1 + k2 − j) .
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1© MZV - Double shuffle relations

These two product expressions give variousQ-linear relations between MZV.

Example

ζ(2) · ζ(3)
harmonic

= ζ(2, 3) + ζ(3, 2) + ζ(5)
shuffle
= ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .

=⇒ 2ζ(3, 2) + 6ζ(4, 1)
double shuffle

= ζ(5) .

But there are more relations between MZV. e.g.:∑
m>n>0

1

m2n
= ζ(2, 1) = ζ(3) =

∑
m>0

1

m3
.

These follow from regularizing the double shuffle relations

 extended double shuffle relations.
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1© MZV - Conjectures

MZV Conjectures

The extended double shuffle relations give all linear relations among MZV and

Z =
⊕
k≥0
Zk ,

i.e. there are no relations between MZV of different weight.

(Zagier) The dimension of the spacesZk is given by∑
k≥0

dimQZkXk =
1

1−X2 −X3
.

(Hoffman) The following set gives a basis ofZ

{ζ(k1, . . . , kr) | r ≥ 0, k1, . . . , kr ∈ {2, 3}} .
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1© MZV - What we know

Theorem (Deligne-Goncharov, Terasoma)

We have dimQZk ≤ dk , where
∑

k≥0 dkX
k := (1−X2 −X3)−1.

Theorem (Brown, 2012)

Every MZV can be written as a linear combination of ζ(k1, . . . , kr) with kj ∈ {2, 3}.

Example

ζ(4) =
4

3
ζ(2, 2) , ζ(5) =

6

5
ζ(2, 3) +

4

5
ζ(3, 2) ,

ζ(4, 1) =
1

5
ζ(2, 3)− 1

5
ζ(3, 2) , ζ(6) =

16

3
ζ(2, 2, 2) .
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1© MZV - Connection with modular forms

Theorem (Gangl-Kaneko-Zagier, 2006)

Modular forms of weight k "give" relations between ζ(r, s) and ζ(k) with k = r + s and r, s odd.

There are explicit formulas for these relation using period polynomials (next slide).

Example

Each Eisenstein series in weight k corresponds to the relation

ζ(3, k − 3) + ζ(5, k − 5) + · · ·+ ζ(k − 3, 3) + ζ(k − 1, 1) =
1

4
ζ(k) .

The cusp form ∆ in weight 12 gives

168ζ(5, 7) + 150ζ(7, 5) + 28ζ(9, 3) =
5197

691
ζ(12) .
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1© MZV - Connection with modular forms - Period polynomials

Vk : homogeneous polynomials of degree k − 2.

Definition

For a cusp for f ∈ Sk its period polynomial is defined as the following polynomial inC⊗ Vk

Pf (X,Y ) =

∫ i∞

0
(X − Y τ)k−2f(τ) dτ .

Denote by P−f the even part of Pf . These are elements inC⊗W−k , where

W−k = {P ∈ Vk | P (X,Y )− P (X + Y, Y ) + P (X + Y,X) = 0} .

Theorem (Eichler-Shimura-Manin)

The map p− : f 7→ P−f induces an isomorphism

p− : Sk
∼−→ C⊗W

−
k

/
Q(Xk−2 − Y k−2) .
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1© MZV - Connection with modular forms

Define for a polynomial p ∈ Vk the coefficients βpr,s ∈ Q by

∑
r+s=k
r,s≥1

(
k − 2

r − 1

)
βpr,sX

r−1Y s−1 := p(X + Y, Y ) .

Then the more precise statement of the Theorem of Gangl-Kaneko-Zagier is as follows:

Theorem (Gangl-Kaneko-Zagier, 2006)

For all p ∈W−k with k ≥ 4 even we have∑
r+s=k
r,s≥1 odd

βpr,sζ(r, s) ≡ 0 mod Qζ(k) .
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1© MZV - Regularization

Definition

For k1, . . . , kr ≥ 1 there exists a unique ζ(k1, . . . , kr;T ) ∈ Z[T ] with

ζ(1;T ) = T ,

For k1 ≥ 2 it is ζ(k1, . . . , kr;T ) = ζ(k1, . . . , kr),

Their product can be expressed by the harmonic product formula.

Example

Since

ζ(1;T ) · ζ(2;T ) = ζ(1, 2;T ) + ζ(2, 1;T ) + ζ(3;T )

we have

ζ(1, 2;T ) = ζ(2)T − ζ(2, 1)− ζ(3) .

In general we have for k admissible: ζ(1, . . . , 1︸ ︷︷ ︸
m

,k;T ) = ζ(k)T
m

m! + . . . .
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1© MZV - Symmetric MZVs

Definition

For an indexset k = (k1, . . . , kr) define the symmetric multiple zeta value by

ζS(k) =

r∑
a=0

(−1)k1+···+kaζ(ka, ka−1, . . . , k1;T )ζ(ka+1, ka+2, . . . , kr;T ) .

One can check that the definition of ζS is independent of T .

The product of two SMZV can again be expressed by the harmonic product, e.g.

ζS(k1) · ζS(k2) = ζS(k1, k2) + ζS(k2, k1) + ζS(k1 + k2) .
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1© MZV - Symmetric MZV

In depth r = 1 we have for k ≥ 1

ζS(k) = ζ(k;T ) + (−1)kζ(k;T ) =

{
2ζ(k) , k is even

0 , k is odd
.

Question: Do we get all MZV?

Theorem (Yasuda, 2014)

We haveZ = 〈ζS(k)〉Q.

Relations between MZV give relation between Symmetric MZV:

Example
ζ(5)− 2ζ(2, 3) + 4ζ(4, 1) = 0

⇐⇒
ζS(4, 1)− ζS(1, 4) + ζS(3, 2) = 0
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2© Finite MZV - Definition

∑
m1>···>mr>0

1

mk1
1 · · ·m

kr
r
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2© Finite MZV - Definition

Definition

For an indexset k = (k1, . . . , kr) the finite multiple zeta value is defined by

ζA(k) =

 ∑
p>m1>···>mr>0

1

mk1
1 · · ·m

kr
r

mod p


p prime

∈ A ,

whereA is given by

A =

∏
p prime

Fp�⊕
p prime

Fp
.

( Fp = Z/pZ )
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2© Finite MZV - The algebraA

We have an embeddingQ i
↪−→ A, since for ab ∈ Q we can get a solution xp of

b xp − a ≡ 0 mod p

for all but finitely many p. Set xp = 0 if it does not exists and define

i
(a
b

)
= (x2, x3, x5, x7, . . . ) ∈ A =

∏
p prime

Fp�⊕
p prime

Fp
.

=⇒A is aQ-algebra.

Example

i

(
3

10

)
= (0, 0, 0, 1, 8, 12, 2, 6, 21, . . . ) .
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2© Finite MZV - The spaceZA

For the space spanned by all FMZVs we write

ZA = 〈ζA(k)〉Q .

Finite MZV satisfy the same harmonic product formula as MZV, e.g.

ζA(k1) · ζA(k2) = ζA(k1, k2) + ζA(k2, k1) + ζA(k1 + k2)

and thereforeZA is aQ-algebra.
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2© Finite MZV - Depth 1 and 2

Proposition

Depth 1: For k ≥ 1 we have ζA(k) = 0.

Depth 2: For k1, k2 ≥ 1 we have

ζA(k1, k2) =

(
(−1)k1

(
k1 + k2
k2

)
Bp−k1−k2
k1 + k2

)
p prime

.

Clearly ζA(k1, k2) = 0 if k1 + k2 is even.

It is expected, that ζA(k1, k2) 6= 0 if k1 + k2 is odd.

We do not know an example for k 6= ∅, for which we can prove ζA(k) 6= 0.
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2© Finite MZV - Relations

In their work, Kaneko and Zagier prove several linear relations among finite MZV.

Example
ζA(4, 1)− ζA(1, 4) + ζA(3, 2) = 0

They also made the following observation

Observation (Kaneko, Zagier)

The number of relations between ζA(2a, 1, 2b, 1) seems to correspond to cusp forms in weight 2(a+ b+ 1).

For example in weight 12 the first relation of this type is given by

16ζA(2, 1, 8, 1) + 9ζA(4, 1, 6, 1) + 18ζA(6, 1, 4, 1)− 2ζA(8, 1, 2, 1) = 0 .

There are no proven results on this observation or on any connections of finite MZV with modular forms.
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2© Finite MZV - Finite MZV↔ Symmetric MZV

Conjecture (Kaneko-Zagier)

We have anQ-algebra isomorphism

ϕKZ : ZA −→ Z/π2Z
ζA(k) 7−→ ζS(k) mod π2Z .

The dimension ofZAk is given by

∑
k≥0

dimQZAk Xk =
1−X2

1−X2 −X3
.

We do not even know if the map ϕKZ is well-defined.
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3© Multiple harmonic q-series - Definition

Definition

For n ≥ 1 and an index set k = (k1, . . . , kr) with k1, . . . , kr ≥ 1 we define

zn(k; q) = zn(k1, . . . , kr; q) =
∑

n>m1>···>mr>0

q(k1−1)m1 . . . q(kr−1)mr

[m1]
k1
q · · · [mr]

kr
q

,

where [m]q = 1−qm
1−q = 1 + q + · · ·+ qm−1.

1 Notice that for k1 ≥ 2

lim
n→∞

lim
q→1

zn(k; q) = ζ(k) .

2 We will be interested in the values zn(k; ζn) ∈ Q(ζn), where ζn is a primitive n-th root of unity.
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3© Multiple harmonic q-series - "Analytic limit" (n→∞)

Theorem (B.-Takeyama-Tasaka, 2018)

For any index set k = (k1, . . . , kr) the limit lim
n→∞

zn(k; e
2πi
n ) exists and we set

ξ(k) := lim
n→∞

zn(k; e
2πi
n ) ∈ C .

It is given by

ξ(k) =
r∑

a=0

(−1)k1+···+kaζ
(
ka, ka−1, . . . , k1;

πi

2

)
ζ(ka+1, ka+2, . . . , kr;−

πi

2

)
.

Corollary

For any index set k = (k1, . . . , kr) we have

Re (ξ(k)) ≡ ζS(k) mod π2Z .

 Relations among the zn give relations among ζS (modulo π2Z ).
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3© Multiple harmonic q-series - "Algebraic limit"

Theorem (B.-Takeyama-Tasaka, 2018)

For any primitive root of unity ζp, we have

(zp(k) mod p)p = ζA(k) ,

where p = (1− ζp) is the prime ideal of Z[ζp] generated by 1− ζp.

Proof:

For p prime it is zp(k) ∈ Z[ζp].

It holds that Z[ζp]/p ∼= Z/pZ .

For p > m > 0 we have [m]ζp ≡ m mod p.

 Relations among the zp give relations among ζA.
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4© Alternating finite MZV - Definition

1 There exist "levelN " versions of (finite) multiple zeta values.

2 These are defined by introducing powers ofN -th roots of unity in the numerator.

For example (some of) the levelN = 2 versions of finite double zeta values are defined as follows:

Definition

For r, s ≥ 1 we define the following alternating finite double zeta values

ζA(r, s) =

 ∑
p>m>n>0

(−1)m

mrns
mod p


p

∈ A ,

ζA(r, s) =

 ∑
p>m>n>0

(−1)m+n

mrns
mod p


p

∈ A .

In a similar way one can define ζA(k) and ζA(r, s).
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4© Alternating finite MZV -Fk

Define the space of finite alternating double zeta values by

Fk = 〈ζA(r, s) | r, s ∈ N ∪ N , |r|+ |s| = k〉Q +QζA(k) ,

whereN = {1, 2, . . . } and |r| = r.

Proposition

For odd k we haveFk = QζA(k).

For even weight k it seems that the spaceFk is not understood yet.
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4© Alternating finite MZV - Some relations in even weight

As before we define for a hom. polynomial p ∈ Q[X,Y ] of degree k − 2 the coefficients βpr,s ∈ Q by∑
r+s=k
r,s≥1

(
k − 2

r − 1

)
βpr,sX

r−1Y s−1 := p(X + Y, Y ) .

Theorem (B.-Anzawa, 2021+)

For any even hom. polynomial p ∈ Q[X,Y ] of degree k − 2 we have∑
r+s=k
r,s≥1

βpr,s2
rζA(r, s) = 0 .

For example for p(X,Y ) = Xk−2 with k ≥ 4 even we obtain∑
r+s=k
r≥2,s≥1

2rζA(r, s) = 0 .
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4© Alternating finite MZV - Observations

1 In contrast to classical double zeta values the theorem gives relations for all even polynomials and not just

period polynomials.

2 (It seems like that) this theorem gives not all relations in even weight. For example, numerical experiments

suggest that

21ζA(4, 2)
?
= −8ζA(3, 3)− 36ζA(5, 1) .

3 In general we expect that for even k we have

Fk
?
= 〈ζA(r, s) | r, s ≥ 1 odd , r + s = k, 〉Q .

Moreover it seems that all the ζA(r, s) for r, s odd are linearly independent.

Thank you very much for your attention!
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