From Playstation to Hospitals Hidden mathematics in our daily life

Studium Generale - 8th November 2019

About me

Born in Hamburg (Germany)

- Studied mathematics at Hamburg University
- Since last month Associate Professor at Nagoya University in the G30 Program
- Interested in Number theory

Mathematics....

MATH IS EVERYWHERE

Do you like mathematics?

Yes

I always liked mathematics in school / university. It is a really cool subject!

No

I accept that mathematics might be important, but I was never a big fan of it.

Ein Beispiel / An Example

The magic machine

In general we often have something like this....

Today: Discuss two explicit examples

Karaoke / Playstation SingStar

- Playstation SingStar is a competitive karaoke game.
- You score by singing a song in the correct pitch.

SingStar: How does it work?

Soundwaves

Sound is a vibration that typically propagates as an audible wave of pressure, through a transmission medium such as a gas, liquid or solid.

SingStar: Piano version

Can you be a SingStar machine?

Which three keys are played here?

Yes: C + G + B

Can you be a SingStar machine?

Correct: No

$$D + F + B$$

$$C + G + B$$

Movement 1 (M1): Go 1 step east

Movement 2 (M2): Go 1 step north

Movement 1 (M1): Go 1 step east

Movement 2 (M2): Go 1 step north

Movement 3 (M3): Go 1 step

east & 1 step south

Movement 4 (M4): Go 2 steps

west & 3 steps north

Movement 1 (M1): Go 1 step east

Movement 2 (M2): Go 1 step north

Movement 3 (M3): Go 1 step

east & 1 step south

Movement 4 (M4): Go 2 steps

west & 3 steps north

Some linear algebra...a bit more serious

Vector Notation:

$$M_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, M_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$M_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, M_4 = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

$$2M_1 + 3M_2 = \binom{2}{0} + \binom{0}{3} = \binom{2}{3}$$

 $\stackrel{\triangle}{\mathbb{R}}$ Find numbers a and b such that

$$aM_3 + bM_4 = a \begin{pmatrix} 1 \\ -1 \end{pmatrix} + b \begin{pmatrix} -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Matrix * Vector = Vector

$$A^{-1} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}}_{A} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
$$\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \cdot 3 + 3 \cdot 2 \\ 2 + 3 \end{pmatrix} = \begin{pmatrix} 12 \\ 5 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$

$$12M_3 + 5M_4 = 12\begin{pmatrix} 1 \\ -1 \end{pmatrix} + 5\begin{pmatrix} -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 12 - 10 \\ -12 + 15 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Basis change

These two sets of "movements" are examples of bases for the 2-dimensional space.

- Every point can be reached
- There is a unique way to reach a point

Basis 1 (Standard basis)

$$M_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, M_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$2M_1 + 3M_2 = \binom{2}{3}$$

Change of basis

$$A = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 12 \\ 5 \end{pmatrix}$$

Basis 2

$$M_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \, M_4 = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

$$12M_3 + 5M_4 = \binom{2}{3}$$

Back to SingStar

How to we get this result using math?

Back to SingStar: Recording with a microphone

Back to SingStar: Recording with a microphone

But we can do that for each Key seperately first!

SingStar: Just Linear Algebra

We obtain the same question as before

Find numbers C,D,... such that this equations holds

SingStar: Just Linear Algebra

Interpretation of the solution:

SingStar: How does it work?

Fourier transform

The (discrete) Fourier transform has various applications

Digital filter

- Image processing
- Data compressions (JPEG)
- Appears in various areas of mathematics and physics

A little bit history

Today: Friday 8th November, 2019

124 years ago: Friday 8th November, 1895

Wilhelm Conrad Röntgen 1845 - 1923

Today 124 years ago W. C. Roentgen discovered X-Rays (Röntgenstrahlen, レントゲン線)

For this discovery he obtained the first Nobel Prize in Physics (1901)

X-rays

Different point of view

Computed tomography scan (CT Scan)

CT Scanner (without cover)

Basic principle of **tomography** (tomos = slice/section)

X-Ray from different angles: Sinogram

X-Ray from different angles: Sinogram

Sinogram: Can you invert it?

Is this the Sinogram of S or G?

Sinogram: Can you invert it?

Correct: Yes

CT Scan – How does it work?

Radon transform

Radon transform (sorry a little bit math)

This transform can be inverted by using the Fourier transform and the "Projection slice theorem".

Backprojection: From Sinogram to the original object

One easy way: Simple backprojection

Results are blurry!

In reality **filtered backprojection** is used (uses discrete Fourier transform)

Summary: Math gives magic machines

Some problems are too hard..

In reality, we also have problems where it is really hard/impossible to create a magic machine.

Machine learning

We can simulate "brains" and teach them!

Machine learning

In Fall 2020 I am planning to offer a "Math for machine learning" course in the G30 Program.

