From Playstation to Hospitals Hidden mathematics in our daily life

Studium Generale - 8th November 2019

www.henrikbachmann.com

About me

- Born in Hamburg (Germany)

- Studied mathematics at Hamburg University
- Since last month Associate Professor at Nagoya University in the G30 Program
- Interested in Number theory

Mathematics....

Do you like mathematics?

Yes

I always liked mathematics in school / university. It is a really cool subject!

No
I accept that mathematics might be important, but I was never a big fan of it.

Ein Beispiel / An Example

부싗 Today want

Heute möchte ich über Mathematik sprechen

"Today I want to talk about math"

The magic machine

In general we often have something like this....

Today: Discuss two explicit examples

Karaoke / Playstation SingStar

- Playstation SingStar is a competitive karaoke game.
- You score by singing a song in the correct pitch.

SingStar: How does it work?

Soundwaves

Sound is a vibration that typically propagates as an audible wave of pressure, through a transmission medium such as a gas, liquid or solid.

Pressure

Time

SingStar: Piano version

30 ms

30 ms

Can you be a SingStar machine?

为

Which three keys are played here?

Yes: $\quad C+G+B$

No: $D+F+B$

Can you be a SingStar machine?

)

Correct: No
 D + F + B

$C+G+B$

Some linear algebra...

Some linear algebra...a bit more serious

$\oplus \oplus \oplus$ $\oplus \oplus \oplus \oplus \oplus$

$$
12 M_{3}+5 M_{4}=12\binom{1}{-1}+5\binom{-2}{3}=\binom{12-10}{-12+15}=\binom{2}{3}
$$

Basis change

These two sets of „movements" are examples of bases for the 2-dimensional space.

- Every point can be reached
- There is a unique way to reach a point

$$
\begin{aligned}
& \text { Basis } 2 \\
& M_{3}=\binom{1}{-1}, M_{4}=\binom{-2}{3} \\
& \underline{\underline{12}} M_{3}+\underline{5} M_{4}=\binom{2}{3}
\end{aligned}
$$

Back to SingStar

$D+F+B$
 result using math?

Back to SingStar: Recording with a microphone

1.5
2.41
0.725
1.37
2.16
1.22
1.15
1.98
1.26
1.7

Soundwave
Vector

Back to SingStar: Recording with a microphone

But we can do that for each Key seperately first!

$\left(\begin{array}{c}0.5 \\ 0.999 \\ 0.431 \\ 0.0107 \\ 0.636 \\ 0.97 \\ 0.299 \\ 0.0574 \\ 0.763 \\ 0.906\end{array}\right.$

Soundwave
Vector

SingStar: Just Linear Algebra

We obtain the same question as before

$$
a M_{3}+b M_{4}=a\binom{1}{-1}+b\binom{-2}{3}=\binom{2}{3}
$$

${ }^{7}$, Find numbers a and b such that

$$
=C\left(\begin{array}{c}
0.5 \\
0.999 \\
0.431 \\
0.0117 \\
0.636 \\
0.97 \\
0.299 \\
0.0574 \\
0.763 \\
0.906
\end{array}\right)+D(
$$

SingStar: Just Linear Algebra

(20030

$\left(\begin{array}{c}1.5 \\ 2.41 \\ 0.725 \\ 1.37 \\ 2.16 \\ 1.22 \\ 1.15 \\ 1.98 \\ 1.26 \\ 1.7\end{array}\right)=\left(\begin{array}{cccccccccc}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\ 0.52 & 0.68 & 0.82 & 0.91 & 0.94 & 0.98 & 1 . & 1 . & 0.99 & 0.97 \\ 0.46 & 0.16 & 0.01 & 0.026 & 0.081 & 0.24 & 0.43 & 0.53 & 0.68 & 0.82 \\ 0.57 & 0.95 & 0.94 & 0.65 & 0.46 & 0.16 & 0.011 & 0.0014 & 0.078 & 0.25 \\ 0.41 & 0.00099 & 0.3 & 0.8 & 0.96 & 0.94 & 0.64 & 0.45 & 0.16 & 0.0089 \\ 0.61 & 0.98 & 0.36 & 0.00025 & 0.1 & 0.61 & 0.97 & 1 . & 0.79 & 0.42 \\ 0.37 & 0.11 & 0.91 & 0.78 & 0.42 & 0.00063 & 0.3 & 0.58 & 0.95 & 0.94 \\ 0.65 & 0.74 & 0.0017 & 0.68 & 0.97 & 0.66 & 0.057 & 0.0077 & 0.38 & 0.88 \\ 0.33 & 0.44 & 0.86 & 0.017 & 0.13 & 0.92 & 0.76 & 0.4 & 0.00099 & 0.32 \\ 0.69 & 0.38 & 0.44 & 0.89 & 0.38 & 0.12 & 0.91 & 0.99 & 0.44 & 0.00025\end{array}\right)\left(\begin{array}{c}1 . \\ -2.45 \times 10^{-14} \\ 1.07 \times 10^{-13} \\ 1 . \\ 7.59 \times 10^{-13} \\ 1 . \\ 1.27 \times 10^{-12} \\ -1.07 \times 10^{-12} \\ 2.76 \times 10^{-13} \\ -4.59 \times 10^{-14}\end{array}\right)$

Interpretation of the solution:
\(\left(\begin{array}{c}1 .

-2.45 \times 10^{-14}

1.07 \times 10^{-13}

1 .

7.59 \times 10^{-13}

1 .

1.27 \times 10^{-12}

-1.07 \times 10^{-12}

2.76 \times 10^{-13}

-4.59 \times 10^{-14}\end{array}\right) \approx\)| 1 | 0 | 0 |
| :---: | :---: | :---: |
| 0 | | 0 |
| The keys D,F and B were | | |
| played with the same | | |
| volume | | |

SingStar: How does it work?

Fourier transform

The (discrete) Fourier transform has various applications

- Digital filter

- Image processing
- Data compressions (JPEG)
- Appears in various areas of mathematics and physics

A little bit history

Today：Friday 8th November， 2019
124 years ago：Friday 8th November， 1895

Wilhelm Conrad Röntgen 1845－1923

Today 124 years ago W．C．Roentgen discovered X－Rays（Röntgenstrahlen，レントゲン線）

For this discovery he obtained the first
Nobel Prize in Physics（1901）

X-rays

Different point of view

Computed tomography scan (CT Scan)

CT Scanner
(without cover)
Basic principle of tomography (tomos = slice/section)

X-Ray from different angles: Sinogram

Object

Sinogram

X-Ray from different angles: Sinogram

Sinogram: Can you invert it?

Sinogram: Can you invert it?

Correct: Yes

CT Scan - How does it work?

Radon transform ${ }_{\text {(sorry a little bit math) }}$

This transform can be inverted by using the Fourier transform and the „Projection slice theorem".

Backprojection: From Sinogram to the original object

- One easy way: Simple backprojection

Results are blurry!

In reality filtered backprojection is used (uses discrete Fourier transform)

Summary: Math gives magic machines

Some problems are too hard..

In reality, we also have problems where it is really hard/impossible to create a magic machine.

Machine learning

We can simulate "brains" and teach them!

Machine learning

In Fall 2020 I am planning to offer a „Math for machine learning" course in the G30 Program.

Thank you very much for your attention!

