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(1) MZV & DSH - Definition

Definition

Forki > 2,ko, ..., k. > 1 define the multiple zeta value (MZV)

C(kiy k)= Y

Oml .-.m

M1 > >Mmy >

By 7 we denote its depth and k1 + - - -

+ k, will be called its weight.

— €R.

MZVs can also be written as iterated integrals, e.g.

2.3) / /tl dts /t'z dts /tﬁ dty /M dts
1—1t9 1-— t5 '
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(1) MZV & DSH - Stuffle & Shuffle product

There are two different ways to express the product of MZV in terms of MZV.

Stuffle product (coming from the definition as iterated sums)
Example in depth two (k1, ko > 2)

() Cl) = 3 >

m>0 n>0

Y ot X mmt L owm
o mkink2 mkinke T mkitke
m>n>0 n>m>0 m=n>0

= ((k1, k2) + ((k2, k1) + C(k1 + k2) .

Shuffle product (coming from the expression as iterated integrals)
Example in depth two (k1, ko > 2)

) clh) = S (L) +(120) cmri-d.

=2




(1) MZV & DSH - Double shuffle relations

These two product expressions give various (Q-linear relations between MZV.

Example

¢(2)- ¢(3) "£° ¢(2,3) +((3,2) + {(5)
" ¢(2,3) +3¢(3,2) + 6¢(4,1).

— 2<(3’ 2) + 6C(4, 1) doublghufﬂe C(5) ]

Online tool: https://www.henrikbachmann.com/shuffle.html.
But there are more relations between MZV. e.g.:

1 1
Z m2n 1) =B~ Z m3’

m>n>0 m>0

These follow from regularizing the double shuffle relations
~~extended double shuffle relations. /38


https://www.henrikbachmann.com/shuffle.html

(1) MZV & DSH - Regularized double zeta values IE#i{La h 7= & v — 5 (i

In low depth the shuffle (LLI) and stuffle (*) regularized multiple zeta values are the following elements in R[T]

LTy =¢C(1T) =T

(ks T) = (k5 T) = (k) (k>2)
(k1 ko T) = ¢ (k1 ko T) = (K, ko) (k1> 2,k > 1)
CH(1,k; T) = ¢ (1, ke T) = T¢(k2) — C(k2,1) — (k2 + 1) (k2 >2)

The only case where (" and (* differ in depth two is in weight 2:
1 1
CHLLT) = C(LLT) + 5((2) = 517,
Using the stuffle and shuffle regularized multiple zeta values, we have for all k1, ko > 1

C(k; T)C (ks T) = C(k1y ks T) + k2, k13 T) + ¢ (ky + k2 T)

k1+ko—1 ]_1 ]_1
- 2 ((’“1 - 1> " (kz— 1)) ¢ by +ky — ;7).

=1

(See: K. Ihara, M. Kaneko, and D. Zagier: Derivation and double shuffle relations for multiple zeta values)
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(1) MZV & DSH - Double shuffle relations - Generating series

Now define for @ € {LLI, * } their generating series

=Y DX, X Y) = > Ok ks T) XM YR
k>1 k1,k2>1

Lo XPTLoyRel k1—lyka—1
Using “——p—— = D s ky—k X+ Y277 we see that

T*(X) — T(Y)
X — Y - (507U_IC(2)

— DX HY,Y) + T (X Y, X) +0..0(2),

TX)T (V) = (X, Y) + T*(V, X) +

where d denotes the Kronecker-delta. This correction term comes from the difference

UL LT)= CULLT) + 54(2).
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(2) Formal double zeta space - Definition

Definition

We define for k > 1 the formal double zeta space of weight k as

Dy — <Zk,Zk1,k27Pk1,k2 | k1 + ko =k, k1, kg > 1>Q/(@DS@)

where we divide out the following relations for k1, ko > 1

Pkl,kz = Zkl,kz + Zkz,kl + Zk1+k2

itk i j—1 (©DSO)
= > k1) T\ 1 Zj ky+ka—j -

J=1

6/38



@ Formal double zeta space - In small weight

k Relations in Dy, Basis of Dy, dimg Dy,
1 - Z1 1
2 Zy =0, P11=2Z, AR 1
3 Zog =23, Z12=DP—273 Z3,P13 2
71— 4751, Zao = 3751,
4 4 3,1 2,2 3,1 T Zas 5
P1,3 = Z173 + 5Z3,17 P272 = 10Z3’]_
11

Z4’1 =275 — P273, 2372 = —?Zg, + 3P2’3,
5 9 Zs, Py, Pos 3

Zy3 = 525 —2Py3, Zis=-3Z5+Pis+Po3
6 Ze=4Z33+ 4251, ... 215,433, 25,1 3

(Since Py, 1, = Pk iy is symmetric we just consider the case k1 < ks.)
7/38



(2) Formal double zeta space - Dimensions

o Number of generators: & (Zg, Z1 gy - - s Zk—1,1)
Since (VDSQ) symmetric in k1 and ko we obtain for k even % relations, i.e.
. k
dimg Dy, > 5 (k even).
For k odd we have % relations and therefore

k+1
dimg Dy, > % (k odd).

We will see that these are indeed equalities and not just lower bounds.

8/38



(2) Formal double zeta space - Realization

Let A be a Q-vector space.
Definition

An element in Homg (D, A) is called a realization of the double zeta space of weight % in A.

Remark
We have the following identification

Homg(Dy, A) = {(Zk,21,k_1, oy Zp_1) € AF | satisfying (Q)} ,

where

k1+ko—1 j 1 ] 1
Ziy by + Zkoor + Ziyiks = ) ((kl B 1) + <k2 B 1>> Loy +ho—j - (™)
j=1

In other words: A realization is just a particular choice of Zj,, Zj,, i, € A which satisfy (#) for all k1 + ko = k.

9/38



(2) Formal double zeta space - DZV Realization

Let A be a Q-vector space.

Definition
An element in Homgq (Dy,, A) is called a realization of the double zeta space of weight % in A. J

Example (Double zeta value realization)

For A = R[T] arealization of D, with k > 1is given for k1, ko > 1and k1 + ko = k by

Wk:T) k#2
Zk-’—> C ( I ) # ,
0 k=2
Zy oy — € (R, ks T
Py by V> (ks T)CH (ko T)

10/38



@ Formal double zeta space - Bernoulli & (combinatorial) Eisenstein realizations

For k > 3 there exist realizations in
o A= Qwith Z — — 2k'

o A = Q[q]] with

By
Zkl—>Gk 2k" _1'ZO'k1
Oky,2 5k
Pk1 ko '—>G/€1Gk2 + 2];’2 ;cz + 227 kl’

where G, = q 35 Gk
o A= OH)with Z, — Gy (1) = (k) + (kzﬂlz), Zn 10k— 1(n)q" (r € H,q = ey

The images of Zkl,k2 can be written down explicitly ~~ (combinatorial) double Eisenstein series.

(See the bonus slides for details) 11/38



@ Formal double zeta space - Generating polynomials/series

It is convenient to consider generating series when working with the formal double zeta space:

w(XY)= > Zp g XPlyRL

ki1+ko=k
k1,ko>1

Pre(X,Y)= > PrpXlyRl

ki+ko=k
k1,ke>1
kal _ kal
Rp(X,Y) = ZkW

With this the double shuffle relations (VDS Q) can be written as

gpk(Xa Y) = Sk(Xa Y) + Sk(Y7X) + 9C{k(‘Xvif)

QDSgen®
=X +Y)Y)+3x(X+Y, X). ( gem)

12/38



(2) Formal double zeta space - Sum formula

Theorem ([GKZ, Theorem 1])

o Forall k > 2 we have

k—1
> Zip—j=Z.
j=2

@ For k > 2 even, we have

Zz,ky Zk, Z Gk—j = Zk-

] even ] odd

13/38



@ Formal double zeta space - Sum formula - Proof

Proof: By (VDSgen()) we have
D(X,Y):=3k(X + YY) + 3p(X + YV, X) = 3(X,Y) — 3x(Y, X) — Ry(X,Y) =0.

The first statement now follows by taking the case (X, Y") = (1, 0), since

0= D(1,0) = 3x(1,0) + 3x(1,1) — 3x(1,0) — 3(0,1) — Z}, = Z k=i — Z1 k=1 — Zi -

14/38



(2) Formal double zeta space - Sum formula - Proof

Proof: By (VDSgen()) we have
D(X,)Y) :=3x(X + YY)+ 3p(X + Y, X) = 31(X,Y) — 31(Y, X) — Ry (X, Y) =0.

The first statement now follows by taking the case (X, Y") = (1, 0), since
0= D(1,0) = 3x(1,0) + 3x(1,1) — 3k(1,0) — 3x(0,1) — Zy = Z k=i — Z1k—1 — Zk -

For the second statement first consider for even k

E
—_

Il
b

0=D(1,-1) = 3;(0,-1) 4+ 3(0,1) — 3x(1, =1) — 3x(—1,1) — Z, (=1 Z i — Zk.

.
||
N

Taking0 = D(1,0) £ D( —1) we therefore obtain

— k—1
3 1
0=2 E Zj,k—j — §Zk and 0=2 E Zj,k—j — =7y

q i odd
J even Jo 14/38



(2) Formal double zeta space - Group action

e Vi C Q[X, Y] : homogeneous polynomials of degree k — 2.
@ The generating polynomials 3, B, Ry, are elements in Dy, ®q Vi.

On V}, we define a right-action of Gla(Z) foray = (i b) € Gly(Z) and F' € Vi, by

d
(F|7)(X,Y)=F(aX +bY,cX +dY).
We extend this action linearly to an action of the group ring Z[Gl2(Z)] on Dy, ®q V.

Example We have

(FI1+e)(X,Y)=F(X,Y)+ FY,X), FITAl+e)( X, Y)=FX+Y,Y)+F(X+Y,X),

01 1 1
wheree—(1 0) andT—(0 1).

15/38



@ Formal double zeta space - Double shuffle with group action

The following elements in Gl (Z) will be of importance when working with the above group action.
(-1 0 (01 s (10
°=\o -1/ Tt o) °T“\o 1)°
11 0 —1 1 -1
1) -0 W) -G W)
As seen in the example we can rewrite (ODSgen©) as

‘Bkzsk ’(1+6)+9‘{k

(ODSactionQ)
= 35 ’T(l + 6) .

16/38



@ Formal double zeta space - A Lemma PBr =3k [(L+€) +Re =3, |T(1+¢€)

As a consequence of (VD Saction() we can prove the following useful lemma.

Lemma ([B, Lemma 4.5])

For k > 1 and A = eUe we have

3| (1—0) =P |1 -6)(1+A—-SA%) — Ry [(1+ A+ A?).

Since
(3k | 0)(X,Y) = 3p(—X,-Y) = (-1)*3,(X,Y)
we have
23, kodd (the lemma gives expression of Zy,, 1., in terms of P, o4 and Z})
3| (l—0)= , . .
0 , k even (the lemma gives relations among Py, ¢y and Z},)

17/38



@ Formal double zeta space - Proof of the lemma PBr =3k |[(1+¢€) +R =3, |T(1+¢)

Notice that A = eUe = TeT " le = (_01 1) and that we have A% = &. By (VDSaction¥) we get

3ple=—36+Pr—Re and 34 [TeT ™ = =3, + By [T

Therefore

3k |A = 3 |(T€T_1)€ = (_3k + B |T_1) |€ = 3 -|—in |(T_1€ — 1) ~|—£R;3 .
=:R

Iterating this identity two more times gives
35| A3 =3+ 8|1+ A+ A?).

By direct calculation one can check that the action of (7~ te — 1)(1 + A + A2) and
—(1-0)(1+A- SA2) is the same on the symmetric (i.e. € invariant) polynomial 3.
(eSAZ=T71te, 6 =T 1eA, 6A=T"1eA?, 5SA = A?)

18/38



(2) Formal double zeta space - Parity

Theorem (Parity)

Forodd k > 3, every Zj,, 1, with k1, kg > 1 and k1 + ky = k can be written as a linear combination of Py, o4
and Z},. More precisely we have

k—1 . .
) k—j—1 k—j—1 1 L k1 + ko
iy r = (1) Z(( ky — 1 >+< ky — 1 >+5j"“1) Fir=ity (H)k ( s

i=2
Jeven

Example

9
Zig =P —273, Zoz = —2Py3+ §Z5,

11
Zoy = 23, Z30=3P3 — 725,
Zia=Pa3+ Py1— 375, Zy1=—Po3z+2Z;5.

19/38



@ Formal double zeta space - Parity consequence

Theorem ([GKZ], [B, Theorem 4.8])

Forodd k£ > 1 we have dimg Dy, = % and the sets

By ={Zy,Poj—3,Pyj—s,..., P11}, Bo=A{Zy,Z1p—1,Z34-3,---,Zk—22},

are both bases of Dj..

@ The first set is a basis because of the Parity Theorem.

@ One can show that one can invert the formula in the Parity Theorem to write any Pk1,k2 in terms of the
basis Bs.

20/38



(2) Formal double zeta space - Consequences of the Lemma for even k

From now on (for the rest of the talk) we assume that & is even.

Theorem ([B, Theorem 4.9])

Forall k1, ko > 1 with k = k1 + ko even we have

() -com) =S (a3 (aly ) -am) 2

Jeven

k=3 -

As a consequence of this theorem we get the following relations
27 o7
6P2,6 + 3P4’4 = ?Zg , 15P276 + 3P474 = ?Zg .

Combining these two relations we obtain Py 4 = %Zg.

@ Using the DZV/Eisenstein realization, this gives another proof of C(4)2 = %C(S) and GZ = %Gs.

@ One can also use this theorem to show ((2m) € Q((2)™.

21/38



(2) Formal double zeta space - Consequences of the Lemma for even k

Corollary

We have
k—2
k+1
5%k =D_ Pik-j (k> 4)
g:2
J even
k+1)(k—1)(k—6)
e Dk Zi= Y (=) —1) Phys,- (k> 8)
k1+ko=k

k1,k2>4 even

Proof: The first fomula is the case (kl, kg) = (1, k— 1) in the previous theorem. The second formula follows
by considering k — 3-times the (k1, k2) = (k — 2, 2) case and then subtracting 2-times the
(k1,k2) = (k — 3,3) case. O

Applying Eisenstein realizaton = Every Eisenstein series (Gj, can be written as a polynomial in G4 and G.
22/38



(2) Formal double zeta space - Basis in even weight

Theorem ([GKZ], [B, Theorem 4.12])

Foreven k > 2 we have dimg Dy, = % and the set of Zyq o, i.€.

{Z1 k-1, 23 -3, Z—1,1}

is a basis of Dj..

There are also explicit formulas to write every element in above basis:

Proposition ((GKZ, eq. (7)], [B, Proposition 4.15])

Form,n > 2 evenand k = m + n we have

min{ki1—2,n}

2 k—2— 3\ (k-1 1 1
T = —— ) > B, .|z =y Ny
m,n T —mm : (m_2)< ] > i (kl,k2+2 k> 2 k
k1+ko=k 7=0
k1,k2>1 odd

23/38



(3) Period polynomials - Definition

Definition

For a cusp for f € S} we define its period polynomial as the following polynomial in C ® V.

Pi(X,Y) = /Om(X — Y1) 2f(r)dr.

(Nice paper: Don Zagier: Periods of modular forms and Jacobi theta functions, Invent. math. 104 (1991) 449-465)
Lemma
Foracusp form f € S andy € SLo(Z) we have

7! (ic0)

Briny) = [T - yr2par,
0l

where y(z) = ij_‘g fory = ((cl Z) andz € CU {ioco}.

24/38



(3) Period polynomials - Relations

A consequence of the Lemma is the following:

(Py |(1+ 8))(X,Y) = (/Om+/0) (X — Y72 f(r)dr =0,

oot

(P |1+ U+UH)(X,Y) = (/OOOi+/10+[.:i> (X = Y1)k 2f(r)dr =0.

Definition

For even k > 2 we define

Wi = ker(1 + S) Nker(1+U + U?) C Vj.

By (®) we have Py € C ® W for any cusp form f € Sy,

25/38



(3) Period polynomials - The spaces W}

Vki: symmetric (++) and antisymmetric (—) polynomials in V.

o V' even polynomials in V.
V% odd polynomials in V.
Fore € {4, —, ev,0d} we write W2 = W, N V.

Lemma ([GKZ, p. 14 Lemma])

We have le' = W]gd, W, = W and

Wi =kerl—T-T), WZ=ker(l-TFTe),

1 0
I _J72Q —
where T/ = —U=S (1 1).

26/38



-The spaces I/}

We denote for a cusp form f € Sy, by PfjE the even (—) and odd (+) parts of Pf in W,;t

Example The first non-trivial cusp form appears in weight 12 and is given by the Delta function
o0
24
An)=q]]a-¢9)™.
n=1

The odd and even parts of the period polynomial of f = cA € Sy for some explicit ¢ € C is given by

PH(X,Y) = XY(X? - Y?)}(X? - 4Y?)(4X? - V?),
36
Py (X,Y) = @(Xlo - Y1) - X?2y?(Xx?2 - y?)3,

27/38



@ Period polynomials - Eichler-Shimura Isomorphism

With W,;t = ker(1 — T F T'e) we can also write these spaces explicitly as

W ={PeV,|P(X,)Y)-P(X+Y,Y)-P(X+Y,X) =0},
W, ={PeV,|PX,)Y)-P(X+Y,Y)+P(X +Y,X)=0}.

Theorem (Eichler-Shimura Isomorphism)

The map £ — P induces isomorphisms
Py s

p}_:Sk:)((:@W,:—, p;:Sk%(C@Wk_/Q(Xk—2_Yk—2).

Moreover due to a result of Manin we can always find factors wﬂ:, w{ € C, such that %Pf S W,;t
w3

28/38



(4) Formal DZS & Period polynomials - The space P

Definition

Let P;’ C Dy, denote the space spanned by all Py, g

Py = (Pmn | m,n>2evenm+n=k)g
=QZk + (Pmpn | m,n>4even,m+n =k)g,

@ Applying the Eisenstein realization ¢ to this space gives (,0(7),‘:") = M;.
@ One can show that the Eisenstein realization is actually an isomorphism from P,‘z" to M.
@ In fact it was shown by Gangl, Kaneko and Zagier that 'PZ" is isomorphic to Wk_

@ The nice thing about their result is that this isomorphism can be made explicit.

29/38



(4) Formal DZS & Period polynomials -

Forap € W, we define the coefficients Zl Ky € Qforki, ko > 1,k + ko = kuby

k—2 ok
> ( _1>,351’,€2Xk1 lyka=1.— p(X +Y,Y).

k1
k1+ko=k
k1,k2>1

Theorem ([GKZ, Theorem 3], [B, Theorem 4.30])

For even k > 4 the following map is an isomorphism of (Q-vector spaces
- ev
W, — Py
; D
p Z ﬁkl,kzzklvb :
k1+ko=k
k1,k2 odd
Moreover the image can be written in terms of the generators of 'P,:V explicitly as

Z ﬁzl,kzzklﬁkz =z Z ﬁkl,kz ki,ko mod QZj, .

ki1+ko=Ek k1+k27
k1,k2 odd k1,k2 even

v
30/38



(4) Formal DZS & Period polynomials - W, vs P’

Corollary

Forevenk > 4andany p € W~ we have

Z ﬁil,kQC(khl@) e Qn”.

ki1+ko=k
k’l,k:g odd

Example The normalized even period polynomial of A

PC_A(X7Y) — %(XIO _ YlO) _ X2Y2(X2 . Y2)3
gives the famous relation
5197
168¢(5,7) + 150¢(7,5) 4 28¢(9,3) = ——¢(12).

691
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(4) Formal DZS & Period polynomials - V

Theorem ([GKZ, Proposition 5], [B, Theorem 4.34])

For even k > 4 the following map is an isomorphism of (Q-vector spaces

W — {¢ € Hom(P}',Q) | ¢(Zx) = 0}

Z pkl,k2Xk171Yk271 = (@1 Pry ks 7 Phyks) -

ki1+ko=k
k1,k2>2 even

@ The above theorem can be interpreted as giving for each odd period polynomial a realization in Q

@ Using the notion of extended period polynomials, the above Theorem can be extended to give realizations
in Q with the images of Z}, being non-zero.

@ Applying this general theorem to the period polynomials of Eisenstein series gives the Bernoulli realization
(See bonus slides). ((GKZ, Theorem 4 / Supplement to Proposition 5], [B, Theorem 4.40])

32/38



Outlook

The tools & ideas for the formal double zeta space might be useful in other contexts.
@ Are there maybe other interesting realizations?
@ There seems to be a connection of D, to the space of finite alternating double zeta values.

@ What about a formal finite triple zeta space? Is there a connection to the formal double zeta space and/or
period polynomials?(«+~ Kaneko-Zagier conjecture)

© What about higher depths and/or generalizations? (~~ formal multiple Eisenstein series)

@ Any other ideas?

33/38
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(6) Bonus - Realization lemma

Let A be a (Q-vector space. (For details see [B] Section 4.2)

Realization lemma ([B, Lemma 4.16])

Assume we have power series P(X,Y"), Z(X,Y), Z(X) € A[[X, Y]] such that

Z(X)—-Z(Y)
X-Y
—Z(X+Y,Y)+ Z(X +Y,X),

P(X,Y)=Z(X,Y)+ Z(Y,X) + — 2(2)

where Z(X) = > 14 2(k)X*~1. Then ¢ defined by

(Zy) = 2(k) — 0k,22(2)
O(Zy,y k) = cosfficient of XM 1Y 2" Lin (X V),
(P, i,) = coefficient of XFi-lyka=1,, P(X,Y)

gives a realization of Dy, in A forall k = k1 + ks.

v
34/38



(6) Bonus - Bernoulli realization

Theorem ([GKZ, Supplement to Proposition 5], [B, Theorem 4.20])

With b(X) = 35, B(k)XF1 =1 (% S %) = 5 () X2 gng

b(X,Y) = Z Blky, ko) X1 =1y k=1

k1, ka>1
1 5b6(X)—b(Y) bX)-bX-Y) bY)-bY-X) 1
- §(b(X) (=W 2 x-v 4Y B 12X "~ 96
we have

b(X) —b(Y)
X-vy
—b(X+Y,Y)+b(X +Y,X).

b(X)b(Y) = b(X,Y) + b(Y, X) +

In particular this gives a realization g of Dy, in Q for all k by the Realization lemma.
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(6) Bonus - g-analogues of MZV

Definition
Consider the power series

X1 ,,m1 Xr mp
e lq € q
g(X17”'7XT’): Z 1_6X1qm1 1_€qumr

my>-->my>0

and define the g-series g(k1, . . . , ky) € Q[[g]] as their coefficients

> glky,. k)X X = g(X, LX)
ki,...,kr>1

Proposition
Forki > 2, ko, ..., k. > 1 wehave

lim (1 — ¢)FtFhrg(ky, . k) = Clke, ... kr).

qg—1
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(6) Bonus - Combinatorial double Eisenstein series realization |

Theorem ([GKZ, Theorem 7], [B, Theorem 4.19])

Define the following generating series

H0X,Y) = a6 ¥) = (X = ¥) + 5 ) a(X) + B(¥)a(X) + (X = V)a()
(X = V) (V) + 5 XA () + 5902),
where g/ (X) = qd% Zk21 g(k)$ Then we have

g(X) —g(Y)
XV
=h(X +Y,Y)+h(X +Y, X),

P(X’Y):b(X7Y)+b(Y7X)+ _9(2)

with

P(X,Y) = g(X)g(Y) + b(X)g(Y) + b(Y)g(X) + % (@'(X)Y +¢'(V)X) .
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(6) Bonus - Combinatorial double Eisenstein series realization ||

The theorem on the previous slide gives a realization ¢4 of Dy in qQ[[g]] for all k by the Realization lemma.
Since the space of realizations HomQ (Dk, A) is a vector-space, we can add two realizations to get a new one.
Combining the previous two realizations to

©a =Yg+ Pqg

gives a realization of Dy, in Q][[g]] for all k with

By, JR— N
a(Zk) = Gi = ok + m;%ﬂn)q ,

Op2 4 Oky,2

G(Pkl,kz) lesz ko 2_kl k-
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