Finite multiple harmonic q-series at roots of unity and finite & symmetric multiple zeta values

Henrik BACHMANN	$(Nagoya University)^{*1}$
Yoshihiro TAKEYAMA	$($ University of Tsukuba $)^{*2}$
Koji TASAKA	(Aichi Prefectural University) ^{*3}

For an index $\mathbf{k} = (k_1, \ldots, k_r) \in (\mathbb{Z}_{\geq 1})^r$ with $k_1 \geq 2$ the multiple zeta value and the multiple zeta star value are defined by

$$\zeta(k_1, \dots, k_r) = \sum_{m_1 > \dots > m_r > 0} \frac{1}{m_1^{k_1} \cdots m_r^{k_r}}, \qquad \zeta^*(\mathbf{k}) = \sum_{m_1 \ge \dots \ge m_r > 0} \frac{1}{m_1^{k_1} \cdots m_r^{k_r}}$$

We denote by \mathcal{Z} the Q-vector space spanned by all multiple zeta values. The space \mathcal{Z} forms a subalgebra of \mathbb{R} over Q and is the same space with that spanned by multiple zeta star values. In their recent work [3], Kaneko and Zagier introduce two variants of these values, called finite and symmetric multiple zeta values, and give a mysterious conjecture relating them.

Finite multiple zeta values are defined for an index $\mathbf{k} = (k_1, \ldots, k_r) \in \mathbb{Z}_{\geq 1}^r$ by

$$\zeta_{\mathcal{A}}(\mathbf{k}) = \left(\sum_{p > m_1 > \dots > m_r > 0} \frac{1}{m_1^{k_1} \cdots m_r^{k_r}} \mod p\right)_p \in \mathcal{A},$$

where \mathcal{A} is the Q-algebra $\mathcal{A} = (\prod_p \mathbb{F}_p)/(\bigoplus_p \mathbb{F}_p)$ with p running over all primes. Symmetric multiple zeta values are defined for an index $\mathbf{k} = (k_1, \ldots, k_r) \in \mathbb{Z}_{\geq 1}^r$ by

$$\zeta_{\mathcal{S}}(\mathbf{k}) = \sum_{a=0}^{r} (-1)^{k_1 + \dots + k_a} \zeta^*(k_a, k_{a-1}, \dots, k_1) \zeta^*(k_{a+1}, k_{a+2}, \dots, k_r) \in \mathcal{Z}/\zeta(2)\mathcal{Z},$$

where ζ^* denotes the regularized multiple zeta values defined in [2]. Both, finite and symmetric multiple zeta values, also have star-versions $\zeta^*_{\mathcal{A}}(\mathbf{k}) \in \mathcal{A}$ and $\zeta^*_{\mathcal{S}}(\mathbf{k}) \in$ $\mathcal{Z}/\zeta(2)\mathcal{Z}$, which relate to their non-star version like ζ^* does to ζ . A priori finite and symmetric multiple zeta values are completely different objects, but Kaneko and Zagier gave the following surprising conjecture.

Conjecture 1 (Kaneko–Zagier [3]) Let $\mathcal{Z}_{\mathcal{A}}$ be the \mathbb{Q} -vector space of finite multiple zeta values. There exists a \mathbb{Q} -algebra isomorphism

$$\varphi_{KZ} : \mathcal{Z}_{\mathcal{A}} \longrightarrow \mathcal{Z}/\zeta(2)\mathcal{Z},$$

$$\zeta_{\mathcal{A}}(\mathbf{k}) \longmapsto \zeta_{\mathcal{S}}(\mathbf{k}) \mod \zeta(2)\mathcal{Z}.$$

This work was supported by KAKENHI 16F16021,16H07115 and 26400106.

²⁰¹⁰ Mathematics Subject Classification: 11M32, 11R18, 05A30.

Keywords: multiple zeta (star) values, finite multiple zeta (star) values, symmetric multiple zeta (star) values, Kaneko-Zagier conjecture, finite multiple harmonic q-series.

^{*1} e-mail: henrik.bachmann@math.nagoya-u.ac.jp

web: http://www.henrikbachmann.com

 $^{^{*2}}e\text{-mail: takeyama@math.tsukuba.ac.jp}$

^{*&}lt;sup>3</sup>e-mail: tasaka@ist.aichi-pu.ac.jp

In our work [1], we study this mysterious relationship between finite and symmetric multiple zeta values by considering the *finite multiple harmonic q-series*, defined for $n \in \mathbb{Z}_{\geq 1}$ and an index $\mathbf{k} = (k_1, \ldots, k_r)$ by

$$z_n(\mathbf{k};q) = \sum_{n > m_1 > \dots > m_r > 0} \frac{q^{(k_1 - 1)m_1} \cdots q^{(k_r - 1)m_r}}{[m_1]_q^{k_1} \cdots [m_r]_q^{k_r}},$$

where $[m]_q = \frac{1-q^m}{1-q}$ denotes the usual q-integer. Again, its star version $z_n^*(\mathbf{k};q)$ is defined by allowing equalities among the m_j . In [1] it was observed that these sums relate to finite and symmetric multiple zeta values when evaluated at a primitive n-th root of unity $q = \zeta_n$, which gives elements in the cyclotomic field $\mathbb{Q}(\zeta_n)$. The connection to finite and symmetric multiple zeta values are then given by the following two theorems.

Theorem 1 [1, Theorem 1.1] For any index $\mathbf{k} \in (\mathbb{Z}_{\geq 1})^r$, we have

$$(z_p(\mathbf{k};\zeta_p) \mod \mathfrak{p}_p)_p = \zeta_{\mathcal{A}}(\mathbf{k}), \qquad (z_p^{\star}(\mathbf{k};\zeta_p) \mod \mathfrak{p}_p)_p = \zeta_{\mathcal{A}}^{\star}(\mathbf{k}),$$

where $\mathfrak{p}_p = (1 - \zeta_p)$ is the prime ideal of $\mathbb{Z}[\zeta_p]$ generated by $1 - \zeta_p$.

Theorem 2 [1, Theorem 1.2] For any index $\mathbf{k} \in (\mathbb{Z}_{\geq 1})^r$, the limits

$$\xi(\mathbf{k}) = \lim_{n \to \infty} z_n(\mathbf{k}; e^{2\pi i/n}), \qquad \xi^*(\mathbf{k}) = \lim_{n \to \infty} z_n^*(\mathbf{k}; e^{2\pi i/n})$$

exist in \mathbb{C} and it holds that

$$\operatorname{Re}\xi(\mathbf{k}) \equiv \zeta_{\mathcal{S}}(\mathbf{k}), \qquad \operatorname{Re}\xi^{\star}(\mathbf{k}) \equiv \zeta_{\mathcal{S}}^{\star}(\mathbf{k})$$

modulo $\zeta(2)\mathcal{Z}$.

Relations among the z_n (resp. z_n^*) therefore give relations among $\zeta_{\mathcal{A}}$ (resp. $\zeta_{\mathcal{A}}^*$) and $\zeta_{\mathcal{S}}$ (resp. $\zeta_{\mathcal{S}}^*$) of the same shape. This gives evidence towards the Conjecture of Kaneko and Zagier above. For example, one can show that we have for all $n \in \mathbb{Z}_{>1}$

$$2z_n^{\star}(4,1;\zeta_n) + z_n^{\star}(3,2;\zeta_n) = \frac{(n^4 - 1)(n+5)}{1440}(1-\zeta_n)^5 + \frac{n+2}{3}(1-\zeta_n)^2 z_n^{\star}(2,1;\zeta_n),$$

which by the above Theorems implies the relations

$$2\zeta_{\mathcal{A}}^{\star}(4,1) + \zeta_{\mathcal{A}}^{\star}(3,2) = 0 \quad \text{and} \quad 2\zeta_{\mathcal{S}}^{\star}(4,1) + \zeta_{\mathcal{S}}^{\star}(3,2) \equiv 0 \mod \zeta(2)\mathcal{Z}.$$

It is therefore of great interest to study the relations among the finite multiple harmonic q-series at primitive roots of unity. One such family is given by the following theorem.

Theorem 3 [1, Theorem 1.3] For any index $\mathbf{k} \in (\mathbb{Z}_{\geq 1})^r$ and any n-th primitive root of unity ζ_n , we have

$$z_n^{\star}(\mathbf{k};\zeta_n) = (-1)^{\mathrm{wt}(\mathbf{k})+1} z_n^{\star}(\overline{\mathbf{k}^{\vee}};\zeta_n),$$

where $\overline{\mathbf{k}^{\vee}}$ is the reverse of the Hoffman dual \mathbf{k}^{\vee} (see [1, Section 2.4]).

This Theorem together with the results above gives a new proof of the duality formulas for $\zeta^{\star}_{\mathcal{A}}(\mathbf{k})$ and $\zeta^{\star}_{\mathcal{S}}(\mathbf{k})$, previously obtained by Hoffman and Jarossay respectively.

References

- H. Bachmann, K. Tasaka, Y. Takeyama: Cyclotomic analogues of finite multiple zeta values, Compositio Math., 154 (12), 2018, 2701–2721.
- [2] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compositio Math. 142 (2006), 307–338.
- [3] M. Kaneko and D. Zagier, *Finite multiple zeta values*, in preparation.