Finite multiple harmonic q-series at roots of unity and finite \& symmetric multiple zeta values

Henrik BACHMANN (Nagoya University)*1
Yoshihiro TAKEYAMA (University of Tsukuba)*2
Koji TASAKA (Aichi Prefectural University)*3

For an index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in\left(\mathbb{Z}_{\geq 1}\right)^{r}$ with $k_{1} \geq 2$ the multiple zeta value and the multiple zeta star value are defined by

$$
\zeta\left(k_{1}, \ldots, k_{r}\right)=\sum_{m_{1}>\cdots>m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}, \quad \zeta^{\star}(\mathbf{k})=\sum_{m_{1} \geq \cdots \geq m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} .
$$

We denote by \mathcal{Z} the \mathbb{Q}-vector space spanned by all multiple zeta values. The space \mathcal{Z} forms a subalgebra of \mathbb{R} over \mathbb{Q} and is the same space with that spanned by multiple zeta star values. In their recent work [3], Kaneko and Zagier introduce two variants of these values, called finite and symmetric multiple zeta values, and give a mysterious conjecture relating them.
Finite multiple zeta values are defined for an index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Z}_{\geq 1}^{r}$ by

$$
\zeta_{\mathcal{A}}(\mathbf{k})=\left(\sum_{p>m_{1}>\cdots>m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \bmod p\right)_{p} \in \mathcal{A},
$$

where \mathcal{A} is the \mathbb{Q}-algebra $\mathcal{A}=\left(\prod_{p} \mathbb{F}_{p}\right) /\left(\bigoplus_{p} \mathbb{F}_{p}\right)$ with p running over all primes. Symmetric multiple zeta values are defined for an index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Z}_{\geq 1}^{r}$ by

$$
\zeta_{\mathcal{S}}(\mathbf{k})=\sum_{a=0}^{r}(-1)^{k_{1}+\cdots+k_{a}} \zeta^{*}\left(k_{a}, k_{a-1}, \ldots, k_{1}\right) \zeta^{*}\left(k_{a+1}, k_{a+2}, \ldots, k_{r}\right) \in \mathcal{Z} / \zeta(2) \mathcal{Z}
$$

where ζ^{*} denotes the regularized multiple zeta values defined in [2]. Both, finite and symmetric multiple zeta values, also have star-versions $\zeta_{\mathcal{A}}^{\star}(\mathbf{k}) \in \mathcal{A}$ and $\zeta_{\mathcal{S}}^{\star}(\mathbf{k}) \in$ $\mathcal{Z} / \zeta(2) \mathcal{Z}$, which relate to their non-star version like ζ^{\star} does to ζ. A priori finite and symmetric multiple zeta values are completely different objects, but Kaneko and Zagier gave the following surprising conjecture.
Conjecture 1 (Kaneko-Zagier [3]) Let $\mathcal{Z}_{\mathcal{A}}$ be the \mathbb{Q}-vector space of finite multiple zeta values. There exists $a \mathbb{Q}$-algebra isomorphism

$$
\begin{aligned}
\varphi_{K Z}: \mathcal{Z}_{\mathcal{A}} & \longrightarrow \mathcal{Z} / \zeta(2) \mathcal{Z} \\
\zeta_{\mathcal{A}}(\mathbf{k}) & \longmapsto \zeta_{\mathcal{S}}(\mathbf{k}) \bmod \zeta(2) \mathcal{Z} .
\end{aligned}
$$

*1 e-mail: henrik.bachmann@math.nagoya-u.ac.jp web: http://www.henrikbachmann.com
${ }^{* 2}$ e-mail: takeyama@math.tsukuba.ac.jp
${ }^{* 3}$ e-mail: tasaka@ist.aichi-pu.ac.jp

In our work [1], we study this mysterious relationship between finite and symmetric multiple zeta values by considering the finite multiple harmonic q-series, defined for $n \in \mathbb{Z}_{\geq 1}$ and an index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ by

$$
z_{n}(\mathbf{k} ; q)=\sum_{n>m_{1}>\ldots>m_{r}>0} \frac{q^{\left(k_{1}-1\right) m_{1}} \ldots q^{\left(k_{r}-1\right) m_{r}}}{\left[m_{1}\right]_{q}^{k_{1}} \ldots\left[m_{r}\right]_{q}^{k_{r}}}
$$

where $[m]_{q}=\frac{1-q^{m}}{1-q}$ denotes the usual q-integer. Again, its star version $z_{n}^{\star}(\mathbf{k} ; q)$ is defined by allowing equalities among the m_{j}. In [1] it was observed that these sums relate to finite and symmetric multiple zeta values when evaluated at a primitive n-th root of unity $q=\zeta_{n}$, which gives elements in the cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$. The connection to finite and symmetric multiple zeta values are then given by the following two theorems.
Theorem 1 [1, Theorem 1.1] For any index $\mathbf{k} \in\left(\mathbb{Z}_{\geq 1}\right)^{r}$, we have

$$
\left(z_{p}\left(\mathbf{k} ; \zeta_{p}\right) \quad \bmod \mathfrak{p}_{p}\right)_{p}=\zeta_{\mathcal{A}}(\mathbf{k}), \quad\left(z_{p}^{\star}\left(\mathbf{k} ; \zeta_{p}\right) \quad \bmod \mathfrak{p}_{p}\right)_{p}=\zeta_{\mathcal{A}}^{\star}(\mathbf{k}),
$$

where $\mathfrak{p}_{p}=\left(1-\zeta_{p}\right)$ is the prime ideal of $\mathbb{Z}\left[\zeta_{p}\right]$ generated by $1-\zeta_{p}$.
Theorem 2 [1, Theorem 1.2] For any index $\mathbf{k} \in\left(\mathbb{Z}_{\geq 1}\right)^{r}$, the limits

$$
\xi(\mathbf{k})=\lim _{n \rightarrow \infty} z_{n}\left(\mathbf{k} ; e^{2 \pi i / n}\right), \quad \xi^{\star}(\mathbf{k})=\lim _{n \rightarrow \infty} z_{n}^{\star}\left(\mathbf{k} ; e^{2 \pi i / n}\right)
$$

exist in \mathbb{C} and it holds that

$$
\operatorname{Re} \xi(\mathbf{k}) \equiv \zeta_{\mathcal{S}}(\mathbf{k}), \quad \operatorname{Re} \xi^{\star}(\mathbf{k}) \equiv \zeta_{\mathcal{S}}^{\star}(\mathbf{k})
$$

modulo $\zeta(2) \mathcal{Z}$.
Relations among the z_{n} (resp. z_{n}^{\star}) therefore give relations among $\zeta_{\mathcal{A}}$ (resp. $\zeta_{\mathcal{A}}^{\star}$) and $\zeta_{\mathcal{S}}$ (resp. $\zeta_{\mathcal{S}}^{\star}$) of the same shape. This gives evidence towards the Conjecture of Kaneko and Zagier above. For example, one can show that we have for all $n \in \mathbb{Z}_{\geq 1}$

$$
2 z_{n}^{\star}\left(4,1 ; \zeta_{n}\right)+z_{n}^{\star}\left(3,2 ; \zeta_{n}\right)=\frac{\left(n^{4}-1\right)(n+5)}{1440}\left(1-\zeta_{n}\right)^{5}+\frac{n+2}{3}\left(1-\zeta_{n}\right)^{2} z_{n}^{\star}\left(2,1 ; \zeta_{n}\right),
$$

which by the above Theorems implies the relations

$$
2 \zeta_{\mathcal{A}}^{\star}(4,1)+\zeta_{\mathcal{A}}^{\star}(3,2)=0 \quad \text { and } \quad 2 \zeta_{\mathcal{S}}^{\star}(4,1)+\zeta_{\mathcal{S}}^{\star}(3,2) \equiv 0 \quad \bmod \zeta(2) \mathcal{Z}
$$

It is therefore of great interest to study the relations among the finite multiple harmonic q-series at primitive roots of unity. One such family is given by the following theorem.
Theorem 3 [1, Theorem 1.3] For any index $\mathbf{k} \in\left(\mathbb{Z}_{\geq 1}\right)^{r}$ and any n-th primitive root of unity ζ_{n}, we have

$$
z_{n}^{\star}\left(\mathbf{k} ; \zeta_{n}\right)=(-1)^{\mathrm{wt}(\mathbf{k})+1} z_{n}^{\star}\left(\overline{\mathbf{k}^{\mathrm{v}}} ; \zeta_{n}\right),
$$

where $\overline{\mathbf{k}^{\vee}}$ is the reverse of the Hoffman dual \mathbf{k}^{\vee} (see [1, Section 2.4]).
This Theorem together with the results above gives a new proof of the duality formulas for $\zeta_{\mathcal{A}}^{\star}(\mathbf{k})$ and $\zeta_{\mathcal{S}}^{\star}(\mathbf{k})$, previously obtained by Hoffman and Jarossay respectively.

References

[1] H. Bachmann, K. Tasaka, Y. Takeyama: Cyclotomic analogues of finite multiple zeta values, Compositio Math., 154 (12), 2018, 2701-2721.
[2] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compositio Math. 142 (2006), 307-338.
[3] M. Kaneko and D. Zagier, Finite multiple zeta values, in preparation.

