Elliptic curves

Recall: Diophantine equation

$$
\begin{gathered}
C: f\left(x_{1}, \ldots, x_{r}\right)=0 \\
f\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{r}\right], \operatorname{deg} f=n
\end{gathered}
$$

Goal: Understand $C(R)=\left\{\left(x_{1}, \ldots, x_{r}\right) \in R^{r} \mid(*)\right\}$ $\mathbb{R}=\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}_{p}$
$r=1$, any n : easy (finite check)
$r=2, n=1: \mathbb{Q}$ trivial, \mathbb{Z} : Bezant's lemma
$r=2, n=2$: Conics
$c(\mathbb{Q}) \neq \phi^{?}$? local-to-slohal princible
If $\left(x_{0}, y_{0}\right) \in C(\mathbb{Q})$ we can find all points in $C(\mathbb{d})$ (HW1, Ex 2)
Idea: If $f\left(x_{0}, y_{0}\right)=0$ consider a line through $\left(x_{0}, y_{0}\right)$ with slope $t \in \mathbb{Q}$.

This meets the conic in another point.

$$
y=t \cdot\left(x-x_{0}\right)+y_{0}
$$

Consider $f\left(x_{1} t\left(x-x_{0}\right)+y_{0}\right)$ and factor it $\left(x-x_{0}\right)(a(t) x+b(t))$.
Then $\left(-\frac{b(t)}{a(t)}, t\left(\frac{-b(t)}{a(t)}-x_{0}\right)+y_{0}\right) \in C(\mathbb{Q})$.
Notice: $a(A, b \in \in \mathbb{Q}$
(vertical lines need to be considered separately)
This gives indeed all points in $C(\mathbb{Q})$, since for any $\left(x_{1}, y_{1}\right) \in C(\mathbb{Q})$ the line between $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ has a rational slope (or $\left.x_{0}=x_{1}\right)$.
$r=2, n=3$: cubic curves

$$
f(x, y)=a x^{3}+b x^{2} y+\ldots+h x+i y+j=0
$$

Having one $\left(x_{0}, y_{0}\right) \in C(\mathbb{Q})$
 enough to create new ration pair.
Example: $c: y=x^{3}-x \quad\left(\begin{array}{c}x^{2}=x^{3}-x \\ \left.\epsilon \rightarrow x=0, x^{2}-x-1=0\right) \\ \hline\end{array}\right.$ $(0,0) \in C(\mathbb{Q})$. The line $y=x$ intersects the cave in $\left(\frac{1-\pi}{2}, \ldots\right)$
 and $\left(\frac{1+\sqrt{5}}{2}, \ldots\right)$

But if one has two points $P_{1} Q \in C(\mathbb{Q})$ then the line between them has a rational slope and intersects the cubic in another point $P * Q$.
product? No neutral element.
But if $\exists G \in C(\mathbb{Q})$ we can define $P+Q$ os

$$
O_{*}^{\prime \prime}\left(P_{*} Q\right)
$$

Elliptic carve: non-sinnular plane cubic criocecine-) with at lear one \mathbb{Q}-pt. 0
\leadsto can always bring it in the form $y^{2}=x^{3}+A x+B$

Hisher cases?
We can also consider the curves over \mathbb{C}

$$
\begin{array}{cc}
C / \mathbb{R} & C / \mathbb{C} \\
\uparrow & \uparrow \\
\text { carve } & \text { surface over } \mathbb{R}
\end{array}
$$

genus of surface

$$
C(\mathbb{C}) ; r=2,\left.\operatorname{deg}\right|_{1,2}
$$

higher gen as

The (Faltings)
A curve C of genus 22 has only finitely many © -pts.

Back to elliptic carves:
Example of explicit addition
Consider the carve

$$
E: y^{2}=x^{3}+c \quad c \in \mathbb{Z}
$$

You can check by direct calculation that if $(x, y) \in E(\mathbb{Q})$ then

$$
\left(\frac{x^{4}-8 c x}{4 y^{2}}, \frac{-x^{6}-20 c x^{3}+8 c^{2}}{8 y^{2}}\right) \in E(\mathbb{x})
$$

(Bachet's duplication formula) For example, $c=-2, E: y^{2}=x^{3}-2$ then $(3 \pm 5) \in E(\mathbb{Q})$
actually only

$$
\leadsto\left(\frac{129}{10^{2}},-\frac{383}{10^{3}}\right)
$$ integer solution (for any civet) tritely many

The duplication formula has a geometric interpretation:

This is just a special case of the group structure of an elliptic curve. In general we can take two points $P_{1}, P_{2} \in E(Q)$ and consider the line between there
two (In the special care $P_{1}=P_{2}$ this line is the tangent)
This line intersects the carve in a third point (paribly the point at infinity). We then define $P_{1}+P_{2}$ as this third point mirrored at the x-axis.

We will show: If $P_{1}, P_{2} \in E(\mathbb{Q})$ then $P_{1}+P_{2} \in E(\mathbb{Q})$ and $E(\mathbb{Q})$ is a group with "+" and neutral element $O=$ point at infinity.

One of the main goals is to show the following:

Theorem (Mordell 1922)
$E(\mathbb{Q})$ is a finitely generated abelian group.

$$
\Rightarrow \quad E(\mathbb{Q})=\underbrace{E(\mathbb{Q})_{\text {avion }}}_{\text {understood }} \oplus
$$

elements of fin te odder

Congruent number problem
$n \geq 1$ is called a congruent number if there exists a right triangle with rational sides and whore area equals.
Q: Which numbers n are congruent?

Proposition $n \geqslant 0$ is congruent inf the carve e $y^{2}=x^{3}-n^{2} x$ has a point (x, y) with $x, y \in E C Q \mid$ and $y \neq 0$.

One can show: If $(x, 0) \in E(\mathbb{Q})$ then $(x, 0)$ is a torsion pt.
$\Rightarrow \quad(x, y) \in E(\mathbb{Q})$ with $y \neq 0 \Leftrightarrow \operatorname{rank}$ of Ez

Conjecture (Birch \& Shimerton-Dyer) rank of elliptic curve"
"Order of zero of Harse-weil"
L - function $L\left(E_{(} S\right)$ at $s=1$
Roushly Let $N_{p}=E(\mathbb{Z} /$ /r $)$ and $\mathrm{Pcta} a_{p}=p+1-N_{p}$

Theorem (Tame) (n odd) coddle even
n is a congruent number

$$
\begin{aligned}
& \Leftrightarrow 2 \nVdash\left\{(x, y, z) \in \mathbb{C}^{3} \mid n=2 x^{2}+y^{2}+32 z^{64}\right\} \\
& \Uparrow \quad A_{n}{ }^{\prime \prime} \\
& \text { " } \quad\left\{(x, y, z) \in z^{3} \mid n=2 x^{2}+y^{2}+8 z^{2}\right\} \\
& \text { Br } \\
& \text { Conj. } \\
& B_{n}{ }^{\prime \prime} \quad \text { Example } 2 A_{5}=B_{5}=0
\end{aligned}
$$

