

But: Name comes orisinally from its connection to computing the arc length of an ellipse. \sim "elliptic integrals".
Q: What is an elliptic curve (over K)?
K : field, often $\mathbb{Q}_{1} \mathbb{R}, \mathbb{C}_{1} \mathbb{Q}_{p}$
later $\mathbb{Z} / p \mathbb{Z} \quad(\operatorname{char}(k)=p) \underbrace{}_{\operatorname{char}(k)=0}$
shortest answer:
"abelian variety (over k) of dimension I" $\underset{\substack{\text { group } \\ \text { structure }}}{\substack{\text { zero r et } \\ \text { of potynmials }}}{ }^{\top}$ curve

Equivalent answers:
(smooth)
"irreducible non-sinsular projective algebraic curve (over) of genus I furnished with a point $O^{\prime \prime}$

This might still not be explicit, but if $\operatorname{char}(k) \neq 2,3$ (as in mort cases) we have the following explicit definition:

Def 1 An elliptic curve over a field K (with char $(k) \notin\{2,33)$ is a plane algebraic curve given by

$$
E: y^{2}=x^{3}+A x+B
$$

$$
\left(\begin{array}{c}
\text { Notation } \\
E / K \\
\text { elliptic } \\
\text { curve } \\
\text { over k" }
\end{array}\right)
$$

with $A, B \in K$ and $\frac{4 A^{3}+27 B^{2} \neq 0 \text {. }}{y}$
Example: $E: y^{2}=x^{3}-25 x$
$E(K)$ real pt. $E(\mathbb{R})$

this definition?
Q: Why - are they interesting?

- Elliptic carves turned out to be useful to answer classical mathematical questions. mort famous example: Fermat's last theorem:
For $n \geq 3 \quad a^{n}+b^{n}=c^{n}$ has no integer solutions $a, b, c \in \mathbb{Z}$ with $a \cdot b \cdot c \neq 0$.

Frey \leadsto If there is a solution the \& Ribet the elliptic curse $\left(\begin{array}{l}\text { after change } \\ \text { of variables } \\ \text { one can bins } \\ \text { this to } y^{\prime}=x+A x+B\end{array}\right)$ is not "modular". $y^{2}=x\left(x-a^{n}\right)\left(x+b^{n}\right)$
Taniyama conj: Every E / \mathbb{Q} is modular.

- Shimura
Wiles (1994): This is true! \Rightarrow FLT (taylor) "Modularity theorem"
- Elliptic carves also have practical applications in cryptograph, factoring integers, etc... (later).

We start by talking about general

C: $f\left(x_{1}, x_{2}, \ldots, x_{r}\right)=0$

$$
f\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{r}\right], \operatorname{deg}(f)=n
$$

Natural questions:
a) Are the rational or integer solutions?
b) If so, can we find them?
c) If we have solutions can we find more?
d) Can we find all?
\leadsto Determine $C(\mathbb{Z}), C(\mathbb{Q})$.

Case $r=1$ variable (any degree)

$$
c: f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}, a_{i} \in \mathbb{Z}
$$

Lemma: If $x=\frac{p}{q} \in \mathbb{Q}, f(x)=0$

$$
\Rightarrow p\left|a_{0}, q\right| a_{n} .
$$

\qquad
\leadsto For given a_{0}, \ldots, a_{n} one just needs to check finitely many x.

Case $r=2$ variables, desree $n=1$

$$
C: a x+b y=c, \quad, \quad a b \neq 0
$$

- Infinitely many solutions over \mathbb{Q}
(For any $x \in \mathbb{Q}, y=\frac{c-a x}{b}$)
- Over \mathbb{Z} : Solution over $\mathbb{Z} \Leftrightarrow \operatorname{gcd}(a, b) \mid C$ (Eullids alsorithm/Bezout's lemma)

Case $r=2$ var, desree $n=2$ (Conics)

$$
C: a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

(for a):
Over $\mathbb{Q}:$ "local-to-global" principle:
The (Hasse-Minkounci Theorem)
C has a \mathbb{Q}-pt $\Leftrightarrow C$ has points "locally" $(C(\mathbb{Q}) \neq \varnothing)$ at all "places": $C(\mathbb{R}) \neq \varnothing$ and

Example: - $C: x^{2}+y^{2}+1=0, C(\mathbb{R})=C(\mathbb{Q})=\phi$

- $c: x^{2}+y^{2}-3=0$ has no rational solution since it has no solution $\bmod 4$

Here $C(\mathbb{Q})=\varnothing=C\left(\mathbb{Q}_{\psi}\right)$
$($ but $C(\mathbb{R}) \neq \varnothing)$

- $x^{2}+y^{2}=113$ has solution $(x, y)=(7,8)$. Can we find more?

If one stats with one \mathbb{Q}-pt and considers a line through this pt with a rational slope. This line intersects with another point on $C(\mathbb{Q})!\sim$ This sines all \mathbb{Q}-pts. (Stereoshaphic projection)
(See [ST], Ch.1.1) $\quad x^{2}-D y^{2}=1$ integral points are more difficult. (Af. Rel's $\left.\begin{array}{l}\text { equation }\end{array}\right)$

Case $r=2$ var, de $f n=3$ (plane cubic)
$C: a x^{3}+b x^{2} y+c x y^{2}+\cdots+j=0$
In $n=2$ care we had eithen no \mathbb{Q}-pt or ∞-many. For $n=3$ we can also just have finitely many \mathbb{Q}-pts.
But everything is much harder!

- the local-to-global principle doesn't work: There are cubics with sol's over怍, \mathbb{Q}_{p} bat no \mathbb{Q}-sol.
"Selmer's example" $3 x^{3}+4 y^{3}=5$.
- No algorithm to find all \mathbb{Q}-pts (even if we have one)
Elliptic carve: non-sinnular plane cubic carostive with at least one © - Pt. \leadsto can always bring it in the form $y^{2}=x^{3}+A x+B$

