Homework 1: Rational points on conics \& elliptic curves

Deadline: 3rd May (23:55 JST), 2024 at TACT

Exercise 1.

(i) Show that there are no solutions to $x^{2}+y^{2}-3=0$ over $\mathbb{Z} / 4 \mathbb{Z}$.
(Based on the local-to-global principle, this shows that there is no rational point on this conic.)
(ii) Show that there exists a solution to $x^{2}+1=0$ over \mathbb{Q}_{5}.

For this, it suffices to show that for each $m \geq 1$ the congruence

$$
x^{2}+1 \equiv 0 \quad \bmod 5^{m}
$$

has a solution $x_{m} \in \mathbb{Z} / 5^{m} \mathbb{Z}$, such that $x_{1} \equiv 2 \bmod 5$ and $x_{m+1} \equiv x_{m} \bmod 5^{m}$ for all $m \geq 1$.

Exercise 2. Find all rational points on the conic

$$
C: x^{2}-3 x y+y^{2}-5=0,
$$

given as a 1-parameter family.
(Hint: Compare with Section 1.1 of $\operatorname{ST}]$).

Exercise 3. A number $n \geq 1$ is called a congruent number if it is the area of a right triangle with rational side lengths $a, b, c \in \mathbb{Q}$.
(i) Show that $n \geq 1$ is a congruent number if and only if the elliptic curve

$$
E: y^{2}=x^{3}-n^{2} x
$$

has a rational point $(x, y) \in E(\mathbb{Q})$ with $y \neq 0$.
(ii) Show that $n=1$ is not a congruent number.

For (ii) you do not need to use (i).

References

[ST] J. H. Silverman, J. Tate: Rational Points on Elliptic Curves, Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1992.

