
Learning Regularization Parameters of Inverse Problems
via Deep Neural Networks

A simplified Introduction
Guided Independet Study, Nagoya University, Spring 2023

Dominik Strutz

July 2023
Contents

1 Introduction 2
1.1 The Problem . 2
1.2 Invertability of ATA+ λ2I . 4
1.3 Optimal Space of ϵ . 4
1.4 Ill-posed Problems . 4
1.5 Error Decomposition . 5

2 Algorithm 5

3 Offline Phase 6
3.1 Model, Noise, and Test Data . 6

3.1.1 Code . 7
3.2 Generation of Training Data . 7

3.2.1 Code . 7
3.3 Computation of the Optimal Regularization Parameter . 8

3.3.1 Tikhonov Regularization . 8
3.3.2 Finding the Optimal Regularization Parameter . 8
3.3.3 Code . 8

3.4 Setting up the Neural Network . 10
3.4.1 Code . 12

3.5 Train the Neural Network . 13
3.5.1 Code . 14

4 Online Phase 15
4.1 How to set up the Forward Propagation . 15
4.2 Computation of the Estimates for the Regularization Parameter 15
4.3 Computation of the Inverse Solution . 15
4.4 Code . 15

5 Discussion 16
5.1 Evaluation . 16
5.2 Future Work . 16

A Packages 18

1

1 Introduction

In this work, we discuss a method of learning regularization parameters of inverse problems via deep neural
networks. It is based on the reference written by Afkham et al. (2021). We explain the main idea of this work
and give an implementation for an explicit case of the Algorithm 1 discussed there.

The generation of a usable data set is based on a vector of observations b ∈ Rm. These observations
are often measurements from the real world, e.g., in the context of inverse problem theory in weather
forecasting, oceanography, hydrology, and petroleum engineering. An exact measurement however is almost
impossible. Therefore, we introduce a vector of additive noise ϵ ∈ Rm, which accounts for each individual
measurement’s error.

The desired solution we are trying to find in the context of inverse problems are the design points
xtrue ∈ Rn of the respective observation b. Within this context we assume, that the process that maps a
design point onto an observation b is known. We call this process the model A. In this introduction we
restrict the model A to be a linear map given by

Rn −→ Rm

x 7−→ Ax,
(1)

with A ∈ Rm×n, which results in following relation

b = Axtrue + ϵ. (2)

To solve the introduced problem with an deep learning approach for a different data sets of the same
context, it is efficient to split construction and training of a deep neural network (DNN) from the computation
of the solution. Therefore, we first describe the construction and training in the offline phase and then the
computation of an approximation x̂true ∈ Rn of the desired solution xtrue.

1.1 The Problem

More precisely, we want to find the best possible prediction for the design point given through

x̂(λ) = arg min
x

J (x, b) +R(x, λ) (3)

with the regularization parameter λ ∈ R letting its optimal value be

λopt = arg min
λ

∥x̂(λ) − xtrue∥2 (4)

and
J (x, b) = ∥Ax− b∥22 , (5)

R(x, λ) = λ2 ∥x∥22 , (6)

which then defines the Tikhonov regularization (Hilt et al., 1977)

x̂(λ) = arg min
x

∥Ax− b∥22 + λ2 ∥x∥22 = arg min
x

∥∥∥∥(A

λI

)
x−

(
b

0

)∥∥∥∥2
2

. (7)

Assuming A is invertible the arg min
x̂

∥∥Ax̂(j)(λ) − b(j)
∥∥2
2

for every tuple in the data set
{
x
(j)
true, b

(j)
}J

j=1

2

is solved by A−1b(j) = x̂(j)(λ) and the regularization parameter λ to be 0. But for inverse problems, we
generally cannot expect the model to be intervitable. Regularization is a general method for solving ill-posed
and ill-conditioned problems. Hence, we need to solve an alternated problem starting with a single tuple of
the data.

Now, we alter the solution further by first, rewriting the norm

∥Ax− b∥22 = (Ax− b)T (Ax− b)

= (Ax)T (Ax) − (Ax)Tb− bTAx+ bTb

= xTATAx− 2xTATb+ bTb

(8)

and deriving the least square solution via vector analysis

∂

∂x
(xTATAx− 2xTATb+ bTb) = 2(ATAx−ATb)

0 = 2(ATAx−ATb)⇔ x = (ATA)−1ATb.

(9)

Remark 1.1. Only the first derivative is needed to find the only existing extrema of the term, since the norm is
convex.

Second, we set

Ã =

(
A

λI

)
b̃ =

(
b

0

)
,

(10)

and observe following simplifications through substitution

x = (ÃT Ã)−1ÃT b̃

=

((
AT λI

)(A

λI

))−1 (
A

λI

)T (
b

0

)
=

((
AT λI

)(A

λI

))−1 (
AT λI

)(b
0

)
= (ATA+ λ2I)−1(ATb+ 0)

= (ATA+ λ2I)−1ATb.

(11)

By using this result for λopt

λopt = arg min
λ

∥x̂(λ) − xtrue∥2

= arg min
λ

∥∥(ATA+ λ2I)−1ATb− xtrue
∥∥
2

= arg min
λ

∥∥(ATA+ λ2I)−1AT (Axtrue + ϵ) − xtrue
∥∥
2

= arg min
λ

∥∥(ATA+ λ2I)−1(ATAxtrue +ATϵ) − xtrue
∥∥
2

(12)

A natural question is now what we should do in the case of multiple xi. As a first attempt, we consider
1
2J

∑J
i=1

∥∥Ax̂(j)(λ) − b(j)
∥∥2
2
. Since every summand is a norm, it is easy to see that the sum is minimal if and

3

only if each summand is minimal. For each summand we get an optimal λ, λopt. However, the problem can
be stated equivalently as

∥∥AXT
true − B

∥∥ with Xtrue ∈ RJ×n, B ∈ Rm×J and be considered in different matrix
instead of vector norms where some commonly used are:

(i) Row-sum norm: ∥A∥∞ = max
1≤i≤m

∑n
i=1|ai,j|

(ii) Column-sum norm: ∥A∥1 = max
1≤i≤n

∑m
i=1|ai,j|

(iii) Spectral norm: ∥A∥2 = (max
i

λi(A
TA))

1
2 = max

i
σi(A)

(iv) Frobenius norm: ∥A∥F = (tr(ATA))
1
2 = (

∑min{m,n}

i=1 σ2
i (A))

1
2

(v) Nuclear norm: ∥A∥∗ =
∑min{m,n}

i=1 σi(A)

where λ is the eigenvalue and σ is the singular value of A.

1.2 Invertability of ATA+ λ2I

The product ATA of any real valued matrix A ∈ Rm×n is called gram matrix.

Theorem 1.1. Every eigenvalue λi of a real valued gram matrix ATA is non-negative.

Proof 1.1. Let ⟨·, ·⟩ denote the inner product, λi an eigenvalue of A, and x its respective eigenvector, then
λ ∥x∥2 = ⟨ATAx, x⟩ = ∥Ax∥2

Hence, λi is non-negative.

Adding positive multiple of the identity matrix of respective dimension In ∈ Rn×n results in a positive
definite matrix, i.e., all eigenvalues are greater than 0. Hence, the matrix ATA+ λ2I is regular.

1.3 Optimal Space of ϵ

The solution of Equation (12) is the minimum of a norm. From the properties of norms follows, that we have
a convex behaviour with an overall minimum of 0. This is true if and only if the argument of the norm is
equal to 0. Here, the question arise of which values of noise ϵ are feasible, such that we are still able to find a
lambda which solves f(λ) = (ATA + λ2I)−1(ATAxtrue + ATϵ) − xtrue. We can achieve f(λ) = 0 in the case
ATϵ = λ2xtrue.

1.4 Ill-posed Problems

Definition 1.1. The problem b = A(xtrue) is well posed, if

(i) for all admissible data b exists an xtrue with b = A(xtrue),

(ii) the solution xtrue is uniquely determined by the data,

(iii) the solution depends continuously on the data.

If one of the above conditions is violated, the problem b = A(xtrue) is said to be ill posed.

Regularization in the form of prior knowledge on the distribution of xtrue must be included to compute
reasonable solutions. A prior probability distribution of an uncertain quantity, often simply called the prior,
is its assumed probability distribution before some evidence is taken into account.

4

1.5 Error Decomposition

To elaborate why incorporating prior knowledge is important to access current predictive limitations, we
state the well known Bayes’ theorem.

Theorem 1.2 (Bayes’ theorem). We have

P(θ|D) = P(θ)
P(D|θ)

P(D)
, (13)

where the data are represented by D and parameters are represented by θ. P(θ) is the prior probability, P(D|θ) the
likelihood, and P(D) the evidence. The solution P(θ|D) is called the posterior probability.

Another important effect, which occurs while applying regularization is the bias-variance tradeoff. The
bias–variance tradeoff is the property of a model that the variance σ2 of the parameter estimated across
samples can be reduced by increasing the bias in the estimated parameters (Neal, 2019). The conflict lies in
trying to simultaneously minimize these two sources of error (variance and bias) that prevent the model
to generalizing beyond their training set. This property is involved in the prediction of the regularization
parameter λ since the neural network uses a quadratic loss function, we can decompose its error in a reducible
and irreducible part.

Eb,λopt,D

[(
θ(b) − λopt

)2]︸ ︷︷ ︸
Expected Error

= Eb,D

[(
θ(b) − Ęθ(b)

)2]︸ ︷︷ ︸
Variance

+Eb,λopt

[(
Ęθ(b) − Ěλopt

)2]︸ ︷︷ ︸
Bias2

+Eb,λopt

[(
λopt − Ěλopt

)2]︸ ︷︷ ︸
Noise

(14)

Here,s· is a average over respective values and θ(b) the observation b propagated through the network’s
parameter θ.

2 Algorithm

The overall algorithm will be discussed and implemented with regard to an example and is given through:

Algorithm 1 Learning regularization parameters via DNNs
1: Offline phase

2: Define model A, noise model ϵ, and x
(j)
true

3: Generate appropriate training signals b(j) = Ax
(j)
true + ϵ(j), for j = 1, . . . , J

4: Obtain λ
(j)
opt

5: Set up DNN Φ̂

6: Use training data
{
b(j),λ

(j)
opt

}J

j=1
to compute network parameters θ̂

7: Online phase

8: Obtain new data b

9: Propagate b through the learned network to get λ̂ = Φ̂(b; θ̂)

10: Compute inverse solution x̂(̂λ)

5

3 Offline Phase

In this section, we will describe in 5 steps how to construct and train a DNN to predict the regularization
parameter of the Tikhonov regularization. Since the training process of a neural network requires the highest
computational effort within the Algorithm 1, we advise to split the training and all its precursors.

3.1 Model, Noise, and Test Data

First, we define our model A. For this example, let A be the following 3× 2 matrix

A =

1 2

1 3

1 4

 . (15)

The design points xtrue and the noise ϵ are modeled through normal distributions with mean µx and µϵ

respectively and variance σ2.

xtrue,p ∼ N (µx, σ
2) p = 1, . . . , n,

ϵq ∼ N (µϵ, σ
2) q = 1, . . . ,m

(16)

These values are implanted through a function which takes besides of the mean µ and variance σ2, an
argument to specify the number of desired values to draw from the respective distribution. For the drawing
the design points xtrue and the noise ϵ the model A is required, so that Equation (2) is well defined with
regard to its dimensions.

For the computation of our predictor for a certain design point x̂true(λ), we implement Equation (11). The
respective loss is then given by ∥Ax− b∥22 + λ2 ∥x∥22 and the misfit by ∥x̂(λ) − xtrue∥2.

Remark 3.1.

(i) Solving equations is more efficient and numerically stable then computing inverses.

(ii) Vectorized functions, i.e. functions which accepts one or more arrays and apply the funtction on every
entry of an array are an option for less code.

The following code can be used to draw the design points xtrue and the noise ϵ according to the above
introduction. Also, the computation of derived values predictor of the design point x̂(λ), the loss J (x, b) +

R(x, λ), and the misfit are implemented.

6

3.1.1 Code

1 A = np.array([[1, 2], [1, 3], [1, 4]])
2 dist = np.random.normal
3

4 def draw_x_true(length = 1, mu = 0, sigma = 1, model = np.array([1]).reshape(1, 1), dist = np.
random.normal):

5 shape = model.shape
6 X_true = dist(mu, sigma, np.array([length, shape[1]]))
7 return X_true
8

9 def draw_epsilon(length = 1, mu = 0, sigma = 1, model = np.array([1]).reshape(1, 1), dist = np.
random.normal):

10 shape = model.shape
11 Epsilon = dist(mu, sigma, np.array([length, shape[0]]))
12 return Epsilon
13

14 def compute_x_hat(lambda_, A, b):
15 return np.linalg.solve(A.T @ A + lambda_ * np.identity((A.T @ A).shape[0]) , A.T @ b)
16

17 def compute_loss(lambda_, A, x, b):
18 C = np.dot(A,x)
19 return np.linalg.norm((C - b.reshape(C.shape)))**2 + lambda_**2 * np.linalg.norm(x)
20 vcompute_loss = np.vectorize(compute_loss, excluded=[’A’,’x’,’b’])
21

22 def compute_x_misfit(lambda_, A, x, b):
23 return np.linalg.norm(x - compute_x_hat(lambda_ = lambda_, A = A, b = b))
24 vcompute_x_misfit = np.vectorize(compute_x_misfit, excluded=[’A’,’x’,’b’])

3.2 Generation of Training Data

For an inverse problem, the design points xtrue are usually not available. Hence, we implement a way to
draw observations b without the use of the model A or design points xtrue. Still, the procedure is directly
comparable to the generation of those latter ones and make use of a given distribution. To complete the
training data, we need to produce the observations b to the respective design points xtrue. Now, we make
use of our defined functions to get a data set including a design matrix Xtrue, respective noise ϵ, and an
observations matrix B.

3.2.1 Code

1 def draw_B(length = 1, mu = 0, sigma = 1, model = np.array([1]).reshape(1, 1), dist = np.random.
normal):

2 shape = model.shape
3 B = dist(mu, sigma, np.array([length, shape[0]]))
4 return B
5

6 def compute_b(length = 2, mu = 0, sigma = 1, model = np.array([1]).reshape(1, 1)):
7 X_true = draw_x_true(length, mu, sigma, model, dist)
8 Epsilon = draw_epsilon(length, mu, sigma, model, dist)
9 B = model @ X_true.T - Epsilon.T # + 10 * np.ones((3, 1))

10 return X_true, Epsilon, B
11

12 X_true, epsilon, B = compute_b(length = 1500, mu = 0, sigma = 5, model = A)

7

3.3 Computation of the Optimal Regularization Parameter

After generating all data, we need to compute the optimal regularization parameter λopt to complete the
training set. This is done for each individual design point xtrue and respective observation b with its noise ϵ.
The optimal regularization parameter λopt varies not only between mentioned tuples, but also depend on the
kind of regularization applied. In our example, we choose the Tikhonov Regularization.

3.3.1 Tikhonov Regularization

The altered least square optimization problem is given by Equation (7) and its solution via substitution is
given by Equation (11). After defining the Tikhonov regularization, we now briefly discuss advantages. In
general, solutions using this regularization, tend to be simpler. Therefore odd results for our design points
xtrue are unlikely, e.g., resulting in absurdly high values. Also, closeness to the original least squares problem
and the equivalence to a lagrangian and likelihood estimation making its derivation and application easy to
understand.

3.3.2 Finding the Optimal Regularization Parameter

There are many possible options to regularize an ill-posed problem and even more to chose the regularization
parameter λ. Prominent methods include the discrepancy principle (DP), the generalized cross-validation
(GCV) method, the unbiased predictive risk estimator (UPRE), and the residual periodogram. Some of
these methods require also knowledge about the variance σ2 (or estimation) and additional hyperparameter.
Others are costly with regard to its computation. For this example, we chose a simple grid search without any
heuristic and only applying a discretization over the regularization parameter λ and finding the minimum
over all discrete values of regularization parameter λ with regard to the misfit in Equation (4)

By doing this for each tuple (xtrue, b with ϵ), we were able to display the distribution of the optimal
regularization parameter λopt

3.3.3 Code

1 lambda_grid = np.arange(-12, 12, 1)
2 best_lambda = []
3

4 fig, ax = plt.subplots()
5 for i in np.arange(0, X_true.shape[0]): #B_z.shape[0]
6 losses = vcompute_x_misfit(lambda_ = lambda_grid, A = A, x = X_true[i, :], b = B[:, i])
7 best_lambda.append(lambda_grid[np.argmin(losses)])
8 color = next(ax._get_lines.prop_cycler)[’color’]
9 plt.axvline(x=lambda_grid[np.argmin(losses)], color = color, ymin=0, ymax=0.75)

10 plt.plot(lambda_grid, losses, color = color)
11 plt.xlabel(r"λ")
12 plt.ylabel("Misfit")
13 plt.title("Misfit of the Tikhonov regression")
14 ax.set_ylim([0, ax.get_ylim()[1]])
15 best_lambda = np.array(best_lambda).reshape((len(best_lambda), 1))
16 axtw = ax.twinx()
17 plt.ylabel(r"Frequency of λ_{opt}")
18 plt.hist(x = best_lambda, bins = lambda_grid, fc = (0, 0, 1, 0.3))
19 name = "normal"
20 plt.savefig(name + ".svg", format = "svg")
21 plt.show()

8

Figure 1: Misfit compared to xtrue dependent on λ and histogram of chosen λopt

9

3.4 Setting up the Neural Network

Neural networks is a term widely used for many different architectures. Whereas most of them are sophis-
ticated and difficult to implement, the one used in this example is a rather simple fully connected feed
forward neural network. Such a simple architecture might not be able to solve any difficult task, but for
this example, we only need a few parameters. Training less parameters require less data and therefore less
time and computational resources. We start by defining a class for our feed forward network, containing a
constructor (__init__) and a forward pass function. The constructor builds the architecture, here we have the
input layer defined by the model A followed by two hidden layers with four and five neurons respectively,
and last, the output layer, which is a single scalar, our regularization parameter λ.

Figure 2: Network architecture

For training of the neural network’s parameter θ and testing its predictive capabilities, we also define
respective functions. The training loop expects the data

{
b(j), λopt

}J

j=1
, model A, a loss function(here MSE),

and an optimizer (here ADAM).

MSE(λ) =
1

J

J∑
i=1

(λ− λopt)
2 (17)

The Mean squared error (MSE) can represent the difference between the actual targets λopt and the targets
λ predicted by the model. In this context, it is used to determine the extent to which the model fits the
data well. The MSE loss is one of the most widely used loss functions for regression problems, though its
widespread use stems more from mathematical convenience than considerations of actual loss in applications
(Hastie et al., 2009).

Adaptive Moment Estimation (ADAM) is an optimizer combining gradient descent and the momentum
method. In this optimization algorithm, running averages with exponential forgetting of both the gradients
and the second moments of the gradients are used (Kingma & Ba, 2017).

Given all the expected inputs, the training loop computes a forward pass for every tuple in the batch,
calculates the loss and distributes the errors according to the optimizer during the backward pass. This is
done for each batch containing a certain number of training samples.

To assess the performance of the fully connected feed forward neural network, a second loop is im-
plemented as a function. The test loop requires the same inputs as the training loop except the optimizer,
because it only asses not change the neural network. For that, the test loop computes a forward pass for
every tuple in the batch, calculates the losses and stores them.

An epoch describes one iteration over all tuples in the training set divided in batch size large blocks. The
gradient step uses the information of a whole batch. This implies, that the number of gradient steps per

10

epoch is equal to the size of the training set divided through the size of a batch. The change of weights are
then evaluated with a scaling of respective errors. This scaling of the learning process is called learning rate.
These values are known as hyperparameter and are crucial to shape the training process. However, typically
simple networks are fairly resistant against slightly sub-optimal hyperparameter, which results in slower,
but still accurate learning. Therefore, hyperparameter are chosen with a rule of thumb and no particular
tuning is applied.

Remark 3.2. To make sure that the parameters are not changed during the assessment, the gradients are
frozen.

11

3.4.1 Code

1 class FeedForward(nn.Module):
2 def __init__(self):
3 super().__init__()
4 self.net = nn.Sequential(
5 nn.Linear(A.shape[0],4),
6 nn.ReLU(),
7 nn.Linear(4,5),
8 nn.ReLU(),
9 nn.Linear(5,1),

10)
11

12 def forward(self,x):
13 x = self.net(x)
14 return x
15

16 def train_loop(dataloader, model, loss_fn, optimizer):
17 size = len(dataloader.dataset)
18 for batch, (X, y) in enumerate(dataloader):
19 # Compute prediction and loss
20 pred = model(X)
21 loss = loss_fn(pred, y)
22

23 # Backpropagation
24 optimizer.zero_grad()
25 loss.backward()
26 optimizer.step()
27

28 trainingStep_loss.append(loss.item())
29

30 if batch % 10 == 0:
31 loss, current = loss.item(), (batch + 1) * len(X)
32 print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
33

34

35 def test_loop(dataloader, model, loss_fn):
36 size = len(dataloader.dataset)
37 num_batches = len(dataloader)
38 validation_loss, correct = 0, 0
39

40 with torch.no_grad():
41 for X, y in dataloader:
42 # X is here a batch sized tensor
43 pred = model(X)
44 validation_loss += loss_fn(pred, y).item()
45 validationStep_loss.append(loss_fn(pred, y).item())
46 testStep_loss.append(validation_loss)
47

48 validation_loss /= num_batches
49 print(f"Avg loss: {validation_loss:>8f} \n")
50

51 model = FeedForward()
52 loss_fn = nn.MSELoss()
53 epochs = 8
54 batch_size = 64
55 learning_rate = 1e-3
56 optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

12

3.5 Train the Neural Network

To make use of our predefined functions for training and testing the pytorch neural network, we transform
our observation matrix B into a tensor (with datatype float32 for technical reasons) and repeat the procedures
for the optimal regularization parameter λopt of the respective observations.

After the transformation to make the data processable for the pytorch neural network, we split them into
a training set and a test set. Here, the test set contains 20% of the overall data set.

Remark 3.3. The argument random_state is used to make the splitting reproducible.

By referring from using the whole data set to make one gradient step, we need to introduce a data loader,
which makes it possible to feed the pytorch neural network batch sized training sets during the training
loop. This procedure is called mini batch learning and speeds up the learning process by trading of a little
bit of the accuracy of each gradient step.

Now, we let the train an test loop change the network’s parameter through iterating over a predetermined
number of epochs. At the side, the losses for each epoch will be computed and stored, which is another
way to display performance compared to show the performance on only a single batch. To get a number for
the performance, we can apply the loss function after completed training to the predicted regularization
parameter λ after the forward pass of the observations B together with the known optimal regularization
parameter λopt. Last, we plot the gathered losses to display the training progress and performance on the
test set.

13

3.5.1 Code

1 # convert into PyTorch tensors
2 X = torch.tensor(B.T, dtype=torch.float32)
3 y = torch.tensor(best_lambda, dtype=torch.float32).reshape(-1, 1)
4

5 # set up train test split
6 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
7

8 # create DataLoader, then take one batch
9 train_dataloader = DataLoader(list(zip(X_train, y_train)), shuffle=False, batch_size=batch_size)

10 test_dataloader = DataLoader(list(zip(X_test, y_test)), shuffle=False, batch_size=batch_size)
11

12 trainingEpoch_loss = []
13 validationEpoch_loss = []
14 testEpoch_loss = []
15

16 for t in range(epochs):
17 trainingStep_loss = []
18 validationStep_loss = []
19 testStep_loss = []
20 print(f"Epoch {t+1}\n-------------------------------")
21 train_loop(train_dataloader, model, loss_fn, optimizer)
22 trainingEpoch_loss.append(np.array(trainingStep_loss).mean())
23 test_loop(test_dataloader, model, loss_fn)
24 validationEpoch_loss.append(np.array(validationStep_loss).mean())
25 testEpoch_loss.append(np.array(testStep_loss).mean())
26 print("Done!")
27

28 plt.plot(trainingEpoch_loss, label=’Training loss’)
29 plt.plot(validationEpoch_loss,label=’Validation loss’)
30 plt.xlabel("Epoch")
31 plt.ylabel("MSE")
32 plt.title("Training progress")
33 plt.legend()
34 name = "train"
35 plt.savefig(name + ".svg", format = "svg")
36 plt.show
37

38 y_pred = model.forward(X_test)
39 loss_fn(y_pred, y_test)

14

4 Online Phase

The online phase is rather short compared to the offline phase. We will discuss the generation of new
observations Bnew, their forward propagation through the pytorch neural network, and the computation of
the inverse solution, which was our original goal.

4.1 How to set up the Forward Propagation

As basis for the forward propagation through our trained pytorch neural network, we generate new
observations Bnew. We use the function introduced in Section 3.2 in a similar fashion to the generation of the
training data. At this point, we need to transform the new observations Bnew like the observations B into a
tensor.

4.2 Computation of the Estimates for the Regularization Parameter

For the computation of the regularization parameter λ for the new observations Bnew for the same model A,
we only need to forward pass the tensor through the pytorch neural network and store the output.

4.3 Computation of the Inverse Solution

Finally, we compute the inverse solution as well by using a predefined function from Section 3.1, Equation
(11). For that, we pass the from the pytorch neural network predicted regularization parameter λ with the
respective observation bnew and the model A to the beforehand mentioned function.

4.4 Code

1 B_new = draw_B(100, 0, 1, A)
2 B_new = torch.tensor(B_new, %dtype=torch.float32)
3

4 lambda_hat = model.forward(B_new)
5

6 B_new = B_new.detach().numpy()
7 lambda_hat = lambda_hat.detach().numpy()
8 X_hat = []
9

10 for b, lambda_ in zip(B_new, lambda_hat):
11 X_hat.append(compute_x_hat(lambda_, A, b))

15

5 Discussion

5.1 Evaluation

To evaluate the performance of the algorithm, we have in general two options. The first option is to
implement an established method to solve the problem and compare results on one or more test sets. The
second option would be to set up a measure of misfit like the MSE for regression or the accuracy for
classification tasks. Since we are working here on a regression problem and already introduced the MSE, we
will use the latter option to assess the performance of the algorithm.

Figure 3: Decline of the MSE over the 8 training epochs

For a particular set of 1500 generated data points, we scored an overall MSE of 12.21.

5.2 Future Work

In our example, the respective noise vector ϵ consists of a scalar multiplied and stacked to the needed
amount. This solution makes the code stable against changes of the model and requirements to the noise
(automatic up scaling), but the noise on the observation in each element is the same. The stability can also
be achieved through slightly more complex implementations of the drawing process, e.g., drawing process
of design points xtrue. Also, with regard to the covariance matrix diag(σ1, . . . , σn) where σi = σi+1∀i and

16

all off diagonals are equal to 0, which allow element wise drawing of values, we use a rather optimal
assumption which certainly not always hold for real world data.

Future work could tackle these simplifications and asses the stability of the algorithm in this matter while
iterating through multiple correlated design point element, i.e, some off diagonal elements are not equal to 0.

17

A Packages

Following packages are required for all inbuilt function we used:

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 from sklearn.model_selection import train_test_split
5

6 import torch
7 from torch import nn
8 from torch.utils.data import DataLoader
9 from torchvision import datasets

10 from torchvision.transforms import ToTensor
11

12 from google.colab import files
13 device = (
14 "cuda"
15 if torch.cuda.is_available()
16 else "mps"
17 if torch.backends.mps.is_available()
18 else "cpu"
19)
20 print(f"Using {device} device")

18

References

Afkham, B. M., Chung, J., & Chung, M. (2021). Learning Regularization Parameters of Inverse Problems via
Deep Neural Networks [Publisher: arXiv Version Number: 1]. https://doi.org/10.48550/ARXIV.
2104.06594
Other 27 pages, 16 figures

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning [ISBN: 9780387848570].
Elements, 1, 337387. https://doi.org/10.1007/b94608

Hilt, D. E., Northeastern Forest Experiment Station (Radnor, Pa.), Seegrist, D. W., & United States. (1977).
Ridge, a computer program for calculating ridge regression estimates /. Dept. of Agriculture, Forest Service,
Northeastern Forest Experiment Station, https://doi.org/10.5962/bhl.title.68934

Kingma, D. P., & Ba, J. (2017). Adam: A Method for Stochastic Optimization [arXiv:1412.6980 [cs]]. Retrieved
August 24, 2023, from http://arxiv.org/abs/1412.6980
Comment: Published as a conference paper at the 3rd International Conference for Learning Repre-
sentations, San Diego, 2015

Neal, B. (2019). On the Bias-Variance Tradeoff: Textbooks Need an Update [arXiv:1912.08286 [cs, stat]].
Retrieved August 23, 2023, from http://arxiv.org/abs/1912.08286
Comment: MSc Thesis

19

https://doi.org/10.48550/ARXIV.2104.06594
https://doi.org/10.48550/ARXIV.2104.06594
https://doi.org/10.1007/b94608
https://doi.org/10.5962/bhl.title.68934
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1912.08286

	Introduction
	The Problem
	Invertability of ATA + 2I
	Optimal Space of
	Ill-posed Problems
	Error Decomposition

	Algorithm
	Offline Phase
	Model, Noise, and Test Data
	Code

	Generation of Training Data
	Code

	Computation of the Optimal Regularization Parameter
	Tikhonov Regularization
	Finding the Optimal Regularization Parameter
	Code

	Setting up the Neural Network
	Code

	Train the Neural Network
	Code

	Online Phase
	How to set up the Forward Propagation
	Computation of the Estimates for the Regularization Parameter
	Computation of the Inverse Solution
	Code

	Discussion
	Evaluation
	Future Work

	Packages

