Multiple harmonic q-series at roots of unity

and their connection to finite \& symmetrized multiple zeta values

Henrik Bachmann
Nagoya University \& MPIM Bonn

joint work with Y. Takeyama and K. Tasaka (arXiv:1707.05008) AG-Seminar Algebra, TU Darmstadt, 06.02.2018 www.henrikbachmann.com

Multiple harmonic q-series

Classical case $\quad q=e^{2 \pi i \tau}$

$$
\tau \in \mathbb{H} \quad \mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)
$$

$\underset{\substack{\text { momiux }}}{\substack{\text { (k) }}} \subset \mathcal{O}(\mathrm{H})$

Multiple harmonic q-series

Classical case $\quad q=e^{2 \pi i \tau}$

$$
\tau \in \mathbb{H} \quad \mathrm{k}=\left(k_{1}, \ldots, k_{r}\right)
$$

$M Z V \subset \mathbb{R}$
MZV = Multiple zeta values

Multiple harmonic q-series

Classical case $\quad q=e^{2 \pi i \tau}$

$$
\tau \in \mathbb{H}
$$

$$
\begin{gathered}
q=e^{2 \pi i \tau} \\
\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)
\end{gathered}
$$

Cyclotomic case

$$
\tau \in \mathbb{Q}
$$

$$
c(\mathbf{k})) \subset \operatorname{Map}(\mathbb{Q}, \mathbb{C})
$$

MZV = Multiple zeta values

Multiple harmonic q-series

Classical case $\quad q=e^{2 \pi i \tau}$
$\tau \in \mathbb{H}$
$\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$

Cyclotomic case

$$
\tau \in \mathbb{Q}
$$

Symmetrized
$M Z V \subset \mathbb{R}$
MZV = Multiple zeta values

Multiple harmonic q-series

Classical case $\quad q=e^{2 \pi i \tau}$

$$
\tau \in \mathbb{H} \quad \mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)
$$

Cyclotomic case

$$
\tau \in \mathbb{Q}
$$

Finite
$M Z V \subset \mathcal{A}$

$C($ II $)$ ($\operatorname{Cin}((\mathbb{L})$

Symmetrized
$\mathrm{MZV} \subset \mathbb{R}$
MZV = Multiple zeta values

Multiple harmonic q-series

Classical case $\quad q=e^{2 \pi i \tau}$

$$
\tau \in \mathbb{H} \quad \mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)
$$

Cyclotomic case

$$
\tau \in \mathbb{Q}
$$

Symmetrized
$M Z V \subset \mathbb{R}$

MZV = Multiple zeta values

Multiple harmonic q-series

Classical case $\quad q=e^{2 \pi i \tau}$

$$
\tau \in \mathbb{H} \quad \mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)
$$

Cyclotomic case

$$
\tau \in \mathbb{Q}
$$

MZV = Multiple zeta values

Multiple harmonic q-series

Classical case $\quad q=e^{2 \pi i \tau}$

$$
\tau \in \mathbb{H} \quad \mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)
$$

Cyclotomic case

$$
\tau \in \mathbb{Q}
$$

MZV = Multiple zeta values

(1) MZV - Multiple zeta values

- Indexset: $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right), k_{1}, \ldots, k_{r} \geq 1$,
- k admissible : $\Leftrightarrow k_{1} \geq 2$ or $\mathbf{k}=\emptyset(r=0)$,
- weight: $\mathrm{wt}(\mathbf{k})=k_{1}+\cdots+k_{r}$, depth: r.

Definition

- For \mathbf{k} admissible define the multiple zeta value (MZV)

$$
\zeta(\mathbf{k})=\zeta\left(k_{1}, \ldots, k_{r}\right)=\sum_{m_{1}>\cdots>m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \in \mathbb{R}
$$

and set $\zeta(\emptyset)=1$.

- For the space spanned by all MZV we write

$$
\mathcal{Z}=\langle\zeta(\mathbf{k})| \mathbf{k} \text { admissible }\rangle_{\mathbb{Q}}
$$

and

$$
\left.\mathcal{Z}_{k}=\langle\zeta(\mathbf{k})| \mathbf{k} \text { admissible }, \mathrm{wt}(\mathbf{k})=k\right\rangle_{\mathbb{Q}} .
$$

(1) MZV - Harmonic product

For $k_{1}, k_{2} \geq 2$ we have

$$
\begin{aligned}
\zeta\left(k_{1}\right) \cdot \zeta\left(k_{2}\right) & =\sum_{m_{1}>0} \frac{1}{m_{1}^{k_{1}}} \sum_{m_{2}>0} \frac{1}{m_{2}^{k_{2}}} \\
& =\left(\sum_{m_{1}>m_{2}>0}+\sum_{m_{1}>m_{2}>0}+\sum_{m_{1}=m_{2}>0}\right) \frac{1}{m_{1}^{k_{1}} m_{2}^{k_{2}}} \\
& =\zeta\left(k_{1}, k_{2}\right)+\zeta\left(k_{2}, k_{1}\right)+\zeta\left(k_{1}+k_{2}\right) .
\end{aligned}
$$

This works for arbitrary depths, for example

$$
\begin{aligned}
\zeta\left(k_{1}\right) \cdot \zeta\left(k_{2}, k_{3}\right) & =\zeta\left(k_{1}, k_{2}, k_{3}\right)+\zeta\left(k_{2}, k_{1}, k_{3}\right)+\zeta\left(k_{2}, k_{3}, k_{1}\right) \\
& +\zeta\left(k_{1}+k_{2}, k_{3}\right)+\zeta\left(k_{2}, k_{1}+k_{3}\right) .
\end{aligned}
$$

In particular \mathcal{Z} is a \mathbb{Q}-algebra.

(1) MZV - Double shuffile relations

Additionally MZV can be expressed as iterated integrals. This gives another way (shuffle product) to express the product of two MZV as a linear combination of MZV.

Example

$$
\begin{aligned}
\zeta(2,3)+3 \zeta(3,2) & +6 \zeta(4,1) \stackrel{\text { shuffle }}{=} \zeta(2) \cdot \zeta(3) \stackrel{\text { narmonic }}{=} \zeta(2,3)+\zeta(3,2)+\zeta(5) . \\
& \Longrightarrow 2 \zeta(3,2)+6 \zeta(4,1) \stackrel{\text { double shuffle }}{=} \zeta(5) .
\end{aligned}
$$

But there are more relations between MZV. e.g.:

$$
\zeta(2,1)=\zeta(3)
$$

These type of relations are called extended double shuffle relations.

(1) MZV - Conjectures

MZV Conjectures

- The extended double shuffle relations give all linear relations among MZV and

$$
\mathcal{Z}=\bigoplus_{k \geq 0} \mathcal{Z}_{k}
$$

i.e. there are no relations between MZV of different weight.

- (Zagier) The dimension of the spaces \mathcal{Z}_{k} is given by

$$
\sum_{k \geq 0} \operatorname{dim}_{\mathbb{Q}} \mathcal{Z}_{k} X^{k}=\frac{1}{1-X^{2}-X^{3}}
$$

- (Hoffman) The following set gives a basis of \mathcal{Z}

$$
\left\{\zeta\left(k_{1}, \ldots, k_{r}\right) \mid r \geq 0, k_{1}, \ldots, k_{r} \in\{2,3\}\right\} .
$$

(1) MZV - What we know

Theorem (Goncharov, Terasoma)

We have $\operatorname{dim}_{\mathbb{Q}} \mathcal{Z}_{k} \leq d_{k}$, where $\sum_{k \geq 0} d_{k} X^{k}:=\left(1-X^{2}-X^{3}\right)^{-1}$.

k	0	1	2	3	4	5	6	7	8	9	10	11
\#k adm., wt $=k$	1	0	1	2	4	8	16	32	64	128	256	512
d_{k}	1	0	1	1	1	2	2	3	4	5	7	9

Theorem (Brown, 2011)

Every MZV can be written as a linear combination of $\zeta\left(k_{1}, \ldots, k_{r}\right)$ with $k_{j} \in\{2,3\}$.

Example

$$
\begin{aligned}
\zeta(4) & =\frac{4}{3} \zeta(2,2), & \zeta(5) & =\frac{6}{5} \zeta(2,3)+\frac{4}{5} \zeta(3,2), \\
\zeta(4,1) & =\frac{1}{5} \zeta(2,3)-\frac{1}{5} \zeta(3,2), & \zeta(6) & =\frac{16}{3} \zeta(2,2,2) .
\end{aligned}
$$

(1) MZV - Connection with modular forms

Theorem (Gangl-Kaneko-Zagier, 2006)

Modular forms of weight k "give" relations between $\zeta(r, s)$ and $\zeta(k)$ with $k=r+s$ and r, s odd.

There are explicit formulas for these relation using period polynomials.

Example

- Each Eisenstein series in weight k corresponds to the relation

$$
\zeta(3, k-3)+\zeta(5, k-5)+\cdots+\zeta(k-3,3)+\zeta(k-1,1)=\frac{1}{4} \zeta(k) .
$$

- The cusp form Δ in weight 12 gives

$$
168 \zeta(5,7)+150 \zeta(7,5)+28 \zeta(9,3)=\frac{5197}{691} \zeta(12)
$$

We will see later how this relation can be related to Δ.

(1) MZV - Regularization

Definition

For $k_{1}, \ldots, k_{r} \geq 1$ there exists a unique $\zeta\left(k_{1}, \ldots, k_{r} ; T\right) \in \mathcal{Z}[T]$ with

- $\zeta(1 ; T)=T$,
- For $k_{1} \geq 2$ it is $\zeta\left(k_{1}, \ldots, k_{r} ; T\right)=\zeta\left(k_{1}, \ldots, k_{r}\right)$,
- Their product can be expressed by the harmonic product formula.

Example

Since

$$
\zeta(1 ; T) \cdot \zeta(2 ; T)=\zeta(1,2 ; T)+\zeta(2,1 ; T)+\zeta(3 ; T)
$$

we have

$$
\zeta(1,2 ; T)=\zeta(2) T-\zeta(2,1)-\zeta(3) .
$$

In general we have for \mathbf{k} admissible: $\zeta(\underbrace{1, \ldots, 1}_{m}, \mathbf{k} ; T)=\zeta(\mathbf{k}) \frac{T^{m}}{m!}+\ldots$.

(1) MZV - Symmetrized MZV

Definition

For an indexset $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ define the symmetrized multiple zeta value by

$$
\zeta_{\mathcal{S}}(\mathbf{k})=\sum_{a=0}^{r}(-1)^{k_{1}+\cdots+k_{a}} \zeta\left(k_{a}, k_{a-1}, \ldots, k_{1} ; T\right) \zeta\left(k_{a+1}, k_{a+2}, \ldots, k_{r} ; T\right)
$$

- One can check that the definition of $\zeta_{\mathcal{S}}$ is independent of T.
- The product of two SMZV can again be expressed by the harmonic product, e.g.

$$
\zeta_{\mathcal{S}}\left(k_{1}\right) \cdot \zeta_{\mathcal{S}}\left(k_{2}\right)=\zeta_{\mathcal{S}}\left(k_{1}, k_{2}\right)+\zeta_{\mathcal{S}}\left(k_{2}, k_{1}\right)+\zeta_{\mathcal{S}}\left(k_{1}+k_{2}\right) .
$$

(1) MZV - Symmetrized MZV

In depth $r=1$ we have for $k \geq 1$

$$
\zeta_{\mathcal{S}}(k)=\zeta(k ; T)+(-1)^{k} \zeta(k ; T)=\left\{\begin{array}{ll}
2 \zeta(k) & , k \text { is even } \\
0 & , k \text { is odd }
\end{array} .\right.
$$

Question: Do we get all MZV?

Theorem (Yasuda, 2014)

We have $\mathcal{Z}=\left\langle\zeta_{S}(\mathbf{k})\right\rangle_{\mathbb{Q}}$.
Relations between MZV give relation between Symmetrized MZV:
Example

$$
\begin{gathered}
\zeta(5)-2 \zeta(2,3)+4 \zeta(4,1)=0 \\
\Longleftrightarrow \\
\zeta_{\mathcal{S}}(4,1)-\zeta_{\mathcal{S}}(1,4)+\zeta_{\mathcal{S}}(3,2)=0
\end{gathered}
$$

(2) Finite MZV - Definition

Definition

For an indexset $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ the finite multiple zeta value is defined by

$$
\zeta_{\mathcal{A}}(\mathbf{k})=\left(\sum_{p>m_{1}>\cdots>m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \quad \bmod p\right)_{p \text { prime }} \in \mathcal{A}
$$

where \mathcal{A} is given by

$$
\mathcal{A}=\prod_{p \text { prime }} \mathbb{F}_{p} / \underset{p \text { prime }}{\bigoplus} \mathbb{F}_{p}
$$

$\left(\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}\right)$

(2) Finite MZV - The algebra \mathcal{A}

We have an embedding $\mathbb{Q} \stackrel{i}{\hookrightarrow} \mathcal{Z}^{\mathcal{A}}$, since for $\frac{a}{b} \in \mathbb{Q}$ we can get a solution x_{p} of

$$
b x_{p}-a \equiv 0 \quad \bmod p
$$

for all but finitely many p. Set $x_{p}=0$ if it does not exists and define

$$
i\left(\frac{a}{b}\right)=\left(x_{2}, x_{3}, x_{5}, x_{7}, \ldots\right) \in \mathcal{A}=\prod_{p \text { prime }} \mathbb{F}_{p} / \underset{p \text { prime }}{\bigoplus_{p}} \mathbb{F}_{p}
$$

$\Longrightarrow \mathcal{A}$ is $\mathbf{a} \mathbb{Q}$-algebra.

Example

$$
i\left(\frac{3}{10}\right)=(0,0,0,1,8,12,2,6,21, \ldots)
$$

(2) Finite MZV - The space $\mathcal{Z}^{\mathcal{A}}$

For the space spanned by all FMZVs we write

$$
\mathcal{Z}^{\mathcal{A}}=\left\langle\zeta_{\mathcal{A}}(\mathbf{k})\right\rangle_{\mathbb{Q}} \quad \text { and } \quad \mathcal{Z}_{k}^{\mathcal{A}}=\left\langle\zeta_{\mathcal{A}}(\mathbf{k}) \mid \operatorname{wt}(\mathbf{k})=k\right\rangle_{\mathbb{Q}} .
$$

Finite MZV satisfy the same harmonic product formula, i.e. for example

$$
\zeta_{\mathcal{A}}\left(k_{1}\right) \cdot \zeta_{\mathcal{A}}\left(k_{2}\right)=\zeta_{\mathcal{A}}\left(k_{1}, k_{2}\right)+\zeta_{\mathcal{A}}\left(k_{2}, k_{1}\right)+\zeta_{\mathcal{A}}\left(k_{1}+k_{2}\right)
$$

and therefore $\mathcal{Z}^{\mathcal{A}}$ is a \mathbb{Q}-algebra.

(2) Finite MZV - Depth 1 and 2

Proposition

- Depth 1: For $k \geq 1$ we have $\zeta_{\mathcal{A}}(k)=0$.
- Depth 2: For $k_{1}, k_{2} \geq 1$ we have

$$
\zeta_{\mathcal{A}}\left(k_{1}, k_{2}\right)=\left((-1)^{k_{1}}\binom{k_{1}+k_{2}}{k_{2}} \frac{B_{p-k_{1}-k_{2}}}{k_{1}+k_{2}}\right)_{p \text { prime }}
$$

- Clearly $\zeta_{\mathcal{A}}\left(k_{1}, k_{2}\right)=0$ if $k_{1}+k_{2}$ is even.
- It is expected, that $\zeta_{\mathcal{A}}\left(k_{1}, k_{2}\right) \neq 0$ if $k_{1}+k_{2}$ is odd.
- We do not know an example for $\mathbf{k} \neq \emptyset$, for which we can prove $\zeta_{\mathcal{A}}(\mathbf{k}) \neq 0$.

(2) Finite MZV - Relations

In their work Kaneko and Zagier prove several linear relations among Finite MZV.

Example

$$
\zeta_{\mathcal{A}}(4,1)-\zeta_{\mathcal{A}}(1,4)+\zeta_{\mathcal{A}}(3,2)=0
$$

They also made the following observation

Observation (Kaneko, Zagier)

The number of relations between $\zeta_{\mathcal{A}}(2 a, 1,2 b, 1)$ seems to correspond to cusp forms in weight $2(a+b+1)$.

For example in weight 12 the first relation of this type is given by

$$
16 \zeta_{\mathcal{A}}(2,1,8,1)+9 \zeta_{\mathcal{A}}(4,1,6,1)+18 \zeta_{\mathcal{A}}(6,1,4,1)-2 \zeta_{\mathcal{A}}(8,1,2,1)=0
$$

There are no proven results on this observation (as far as I know).

(3) Kaneko-Zagier Conjecture - Finite MZV \leftrightarrow Symmetrized MZV

Conjecture (Kaneko-Zagier)

- We have an \mathbb{Q}-algebra isomorphism

$$
\begin{aligned}
\varphi_{K Z}: \mathcal{Z}^{\mathcal{A}} & \longrightarrow \mathcal{Z} / \pi^{2} \mathcal{Z} \\
\zeta_{\mathcal{A}}(\mathbf{k}) & \longmapsto \zeta_{\mathcal{S}}(\mathbf{k}) \bmod \pi^{2} \mathcal{Z}
\end{aligned}
$$

- The dimension of $\mathcal{Z}_{k}^{\mathcal{A}}$ is given by

$$
\sum_{k \geq 0} \operatorname{dim}_{\mathbb{Q}} \mathcal{Z}_{k}^{\mathcal{A}} X^{k}=\frac{1-X^{2}}{1-X^{2}-X^{3}}
$$

- We do not even know if the map $\varphi_{K Z}$ is well-defined.
- In contrast to MZV, there is no explicit conjectured basis for $\mathcal{Z}^{\mathcal{A}}$.

(3) Multiple harmonic q-series-general form

A multiple harmonic q-series is a sum of the form

$$
\sum_{m_{1}>\cdots>m_{r}>0} \frac{Q_{1}\left(q^{m_{1}}\right)}{\left(1-q^{m_{1}}\right)^{k_{1}}} \cdots \frac{Q_{r}\left(q^{m_{r}}\right)}{\left(1-q^{m_{r}}\right)^{k_{r}}}
$$

with $Q_{j}(x) \in \mathbb{Q}[x]$ and $k_{j} \in \mathbb{Z}_{\geq 1}$.
With $q=e^{2 \pi i \tau}$, we will consider:

- "classical case": $\tau \in \mathbb{H}=\{x+i y \in \mathbb{C} \mid y>0\},|q|<1$.
- "cyclotomic case": $\tau \in \mathbb{Q}, q$: root of unity.

(3) Multiple harmonic q-series-classical case : Eulerian polynomials

Eisenstein series of weight $k \geq 2$:
$G_{k}(\tau)=\zeta(k)+\frac{(2 \pi i)^{k}}{(k-1)!} \sum_{n>0} \sigma_{k-1}(n) q^{n}=\zeta(k)+(2 \pi i)^{k} \sum_{m>0} \frac{P_{k}\left(q^{m}\right)}{\left(1-q^{m}\right)^{k}}$
$P_{k}(x)$: Eulerian polynomials, defined for $k \geq 1$ by the Polylogarithm

$$
\frac{P_{k}(x)}{(1-x)^{k}}:=\frac{1}{(k-1)!} \operatorname{Li}_{1-k}(x)=\frac{1}{(k-1)!} \sum_{a>0} a^{k-1} x^{a}
$$

We have $P_{k}(1)=1$ and $P_{k}(0)=0$ for all $k \geq 1$.
Example

$$
\begin{aligned}
P_{1}(x)=P_{2}(x) & =x, \quad P_{3}(x)=\frac{1}{2} x^{2}+\frac{1}{2} x \\
P_{4}(x) & =\frac{1}{6} x^{3}+\frac{2}{3} x^{2}+\frac{1}{6} x .
\end{aligned}
$$

(3) Multiple harmonic q-series - classical case $\tau \in \mathbb{H},|q|<1$

Definition

- For $|q|<1$ and any indexset $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ define

$$
g(\mathbf{k} ; q)=g\left(k_{1}, \ldots, k_{r} ; q\right)=\sum_{m_{1}>\cdots>m_{r}>0} \frac{P_{k_{1}}\left(q^{m_{1}}\right)}{\left(1-q^{m_{1}}\right)^{k_{1}}} \cdots \frac{P_{k_{r}}\left(q^{m_{r}}\right)}{\left(1-q^{m_{r}}\right)^{k_{r}}}
$$

and set $g(\emptyset ; q)=1$.

- If we view this as a function (in τ) from \mathbb{H} to \mathbb{C} we just write $g(\mathbf{k})$.
- For the space spanned by all these functions we write

$$
\mathcal{G}=\langle g(\mathbf{k})| \mathbf{k} \text { admissible }\rangle_{\mathbb{Q}} \subset \mathcal{O}(\mathbb{H}) .
$$

and

$$
\left.\mathcal{G}_{k}=\langle g(\mathbf{k})| \mathbf{k} \text { admissible, } \mathrm{wt}(\mathbf{k}) \leq k\right\rangle_{\mathbb{Q}} .
$$

(3) Multiple harmonic q-series - classical case $\tau \in \mathbb{H},|q|<1$

Proposition

The space \mathcal{G} is a \mathbb{Q}-algebra.
Denote for $n \geq 1$ the normalized Eisenstein series by

$$
\widetilde{G}_{2 n}(\tau):=(2 \pi i)^{-2 n} G_{2 n}(\tau)=\frac{1}{2} \frac{B_{2 n}}{(2 n)!}+g(2 n ; q) \in \mathcal{G}
$$

The space of quasi-modular forms $\mathbb{Q}\left[\widetilde{G}_{2}, \widetilde{G}_{4}, \widetilde{G}_{6}\right] \subset \mathcal{G}$ is a sub algebra of \mathcal{G}.

Theorem (B.-Kühn, 2013)

The space \mathcal{G} is closed under the operator $q \frac{d}{d q}$, and $q \frac{d}{d q} \mathcal{G}_{k-2} \subset \mathcal{G}_{k}$.

Example

$$
q \frac{d}{d q} g(1)=g(3)-g(2,1)+\frac{1}{2} g(2)
$$

(3) Multiple harmonic q-series -classical case $\tau \in \mathbb{H},|q|<1$

The functions $g(\mathbf{k})$ can be seen as q-analogues of MZV:

Proposition

For \mathbf{k} admissible and $2 \leq \mathrm{wt}(\mathbf{k}) \leq k$ we have

$$
\lim _{q \rightarrow 1}(1-q)^{k} g(\mathbf{k} ; q)= \begin{cases}\zeta(\mathbf{k}) & , \operatorname{wt}(\mathbf{k})=k \\ 0 & , \operatorname{wt}(\mathbf{k})<k\end{cases}
$$

We get a surjective linear map

$$
\begin{aligned}
\varphi_{k}: \mathcal{G}_{k} & \longrightarrow \mathcal{Z}_{k} \\
g(\mathbf{k}) & \longmapsto \lim _{q \rightarrow 1}(1-q)^{k} g(\mathbf{k} ; q) .
\end{aligned}
$$

(3) Multiple harmonic q-series - q-analogues of MZV

Theorem (B.-Kühn, 2013)

We have the following elements in the kernel of φ_{k}

- Cusp forms: $S_{k}\left(\operatorname{Sl}_{2}(\mathbb{Z})\right) \subset \operatorname{ker}\left(\varphi_{k}\right)$.
- Derivatives: $q \frac{d}{d q} \mathcal{G}_{k-2} \subset \operatorname{ker}\left(\varphi_{k}\right)$.

Example

One can prove that with $\alpha=-\left(2^{6} \cdot 5 \cdot 691\right)^{-1}$

$$
\begin{aligned}
\alpha \Delta & =168 g(5,7)+150 g(7,5)+28 g(9,3) \\
& +\frac{1}{1408} g(2)-\frac{83}{14400} g(4)+\frac{187}{6048} g(6)-\frac{7}{120} g(8)-\frac{5197}{691} g(12)
\end{aligned}
$$

Applying φ_{12} to this gives the Gangl-Kaneko-Zagier relation

$$
168 \zeta(5,7)+150 \zeta(7,5)+28 \zeta(9,3)=\frac{5197}{691} \zeta(12)
$$

Multiple harmonic q-series

Classical case $\quad q=e^{2 \pi i \tau}$

$$
\tau \in \mathbb{H} \quad \mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)
$$

Cyclotomic case

$$
\tau \in \mathbb{Q}
$$

MZV = Multiple zeta values

(3) Multiple harmonic q-series-cyclotomic case $\tau \in \mathbb{Q}, q$: root of unity

From now on: $\tau \in \mathbb{Q}$, i.e. $q=e^{2 \pi i \tau}$ is a root of unity.

$$
\operatorname{ord}(q)=\min \left\{n \mid q^{n}=1\right\} .
$$

Definition

- For a root of unity q and any indexset $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ define

$$
\begin{aligned}
\mathrm{c}(\mathbf{k} ; q) & =\mathrm{c}\left(k_{1}, \ldots, k_{r} ; q\right) \\
& =\sum_{\operatorname{ord}(q)>m_{1}>\cdots>m_{r}>0} \frac{P_{k_{1}}\left(q^{m_{1}}\right)}{\left(1-q^{m_{1}}\right)^{k_{1}}} \cdots \frac{P_{k_{r}}\left(q^{m_{r}}\right)}{\left(1-q^{m_{r}}\right)^{k_{r}}}
\end{aligned}
$$

and set $\mathrm{c}(\emptyset ; q)=1$.

- For the space spanned by all these functions we write

$$
\mathcal{C}=\langle\mathrm{c}(\mathbf{k})\rangle_{\mathbb{Q}} \subset \operatorname{Map}(\mathbb{Q}, \mathbb{C})
$$

and

$$
\mathcal{C}_{k}=\langle\mathrm{c}(\mathbf{k}) \mid \mathrm{wt}(\mathbf{k}) \leq k\rangle_{\mathbb{Q}} .
$$

(3) Multiple harmonic q-series-cyclotomic case: Relations

The space \mathcal{C} is also a \mathbb{Q}-algebra (with the same arguments as for \mathcal{G}).

Example

$$
c(2) \cdot c(3)=c(2,3)+c(3,2)+c(5)-\frac{1}{12} c(3) .
$$

We can prove relations between the c as elements in $\operatorname{Map}(\mathbb{Q}, \mathbb{C})$.

Example

$$
\begin{aligned}
c(2,2)-2 c(4)-\frac{1}{6} c(2) & =0 \\
c(4,1)-c(1,4)+c(3,2) & =0
\end{aligned}
$$

Notice that \mathcal{C} is not graded by the weight.

(3) Multiple harmonic q-series - cyclotomic case : depth 1

Proposition

In depth 1 we have for $k \geq 1$

$$
\mathrm{c}(k ; q)=(-1)^{k-1} \frac{B_{k}}{k!}\left(\operatorname{ord}(q)^{k}-1\right)
$$

Now consider the case $\tau=\frac{1}{n}$, i.e. $q=e^{\frac{2 \pi i}{n}}=: \xi_{n}$ and $\operatorname{ord}(q)=n$.

$$
\lim _{n \rightarrow \infty}\left(1-\xi_{n}\right) n=\lim _{n \rightarrow \infty}\left(-\frac{2 \pi i}{n}-\frac{1}{2}\left(\frac{2 \pi i}{n}\right)^{2}-\ldots\right) n=-2 \pi i
$$

Since $\zeta(k)=-\frac{B_{k}}{k!} \frac{(-2 \pi i)^{k}}{2}$ for even k we obtain

$$
\lim _{n \rightarrow \infty}\left(1-\xi_{n}\right)^{k} \mathrm{c}\left(k ; \xi_{n}\right)= \begin{cases}-\pi i & (k=1) \\ 2 \zeta(k) & (k \geq 2, k \text { is even }) \\ 0 & (k \geq 3, k \text { is odd })\end{cases}
$$

In particular $\operatorname{Re}\left(\lim _{n \rightarrow \infty}\left(1-\xi_{n}\right)^{k} \mathrm{c}\left(k ; \xi_{n}\right)\right)=\zeta_{\mathcal{S}}(k)$.

(3) Multiple harmonic q-series - cyclotomic case: Symmetrized MZV

$$
q=\xi_{n}=e^{\frac{2 \pi i}{n}}
$$

Theorem (B.-Takeyama-Tasaka, 2017)

For any indexset $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ we have

$$
\begin{aligned}
& L(\mathbf{k}):=\lim _{n \rightarrow \infty}\left(1-\xi_{n}\right)^{\mathrm{wt}(\mathbf{k})} \mathrm{c}\left(\mathbf{k} ; \xi_{n}\right) \\
& =\sum_{a=0}^{r}(-1)^{k_{1}+\cdots+k_{a}} \zeta\left(k_{a}, k_{a-1}, \ldots, k_{1} ;-\frac{\pi i}{2}\right) \zeta\left(k_{a+1}, k_{a+2}, \ldots, k_{r} ; \frac{\pi i}{2}\right) .
\end{aligned}
$$

In particular we have $L(\mathbf{k}) \in \mathcal{Z}+\pi i \mathcal{Z}$ and the following.

Corollary

For any indexset $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ we have

$$
\operatorname{Re}(L(\mathbf{k})) \equiv \zeta_{\mathcal{S}}(\mathbf{k}) \quad \bmod \pi^{2} \mathcal{Z}
$$

and $\operatorname{Re}(L(\mathbf{k}))=\zeta_{\mathcal{S}}(\mathbf{k})$ if $\mathbf{k} \neq(\ldots, 1,1, \ldots)$.

(3) Multiple harmonic q-series - cyclotomic case: Symmetrized MZV

The Theorem gives us a surjective linear map

$$
\begin{aligned}
\varphi_{k}^{\mathcal{S}}: \mathcal{C}_{k} & \longrightarrow \mathcal{Z}_{k} \\
\mathrm{c}(\mathbf{k}) & \longmapsto \operatorname{Re}\left(\lim _{n \rightarrow \infty}\left(1-\xi_{n}\right)^{k} \mathrm{c}\left(\mathbf{k} ; \xi_{n}\right)\right)
\end{aligned}
$$

which satisfies $\varphi_{k}^{\mathcal{S}}(\mathrm{c}(\mathbf{k})) \equiv \zeta_{\mathcal{S}}(\mathbf{k}) \bmod \pi^{2} \mathcal{Z}$.

Example

Relations between the c give relation between Symmetrized MZV $\left(\bmod \pi^{2} \mathcal{Z}\right)$

$$
\begin{aligned}
& \mathrm{c}(4,1)-\mathrm{c}(1,4)+\mathrm{c}(3,2)=0 \\
& \text { \} } \varphi_{5}^{s} \\
& \zeta_{\mathcal{S}}(4,1)-\zeta_{\mathcal{S}}(1,4)+\zeta_{\mathcal{S}}(3,2)=0
\end{aligned}
$$

(3) Multiple harmonic q-series - cyclotomic case: Finite MZV

For p prime let $\mathrm{I}_{p}=\left(1-\xi_{p}\right)$ be the ideal of $\mathbb{Z}\left[\xi_{p}\right]$ generated by $1-\xi_{p}$.

Lemma

Let p be a prime, then

- $\left(1-\xi_{p}\right)^{k} \mathrm{c}\left(\mathbf{k} ; \xi_{p}\right) \in \mathbb{Z}\left[\xi_{p}\right]$
- We have $\mathbb{Z}\left[\xi_{p}\right] / \mathrm{I}_{p} \cong \mathbb{F}_{p}$.

From this we get

Theorem (B.-Takeyama-Tasaka, 2017)

For any indexset $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ we have

$$
\left(\left(1-\xi_{p}\right)^{k} \mathrm{c}\left(\mathbf{k} ; \xi_{p}\right) \quad \bmod \mathrm{I}_{p}\right)_{p \text { prime }}=\zeta_{\mathcal{A}}(\mathbf{k})
$$

(3) Multiple harmonic q-series - cyclotomic case: Finite MZV

The Theorem gives us a surjective linear map

$$
\begin{aligned}
\varphi_{k}^{\mathcal{A}}: \mathcal{C}_{k} & \longrightarrow \mathcal{Z}_{k}^{\mathcal{A}} \\
\mathrm{c}(\mathbf{k}) & \longmapsto\left(\left(1-\xi_{p}\right)^{k} \mathrm{c}\left(\mathbf{k} ; \xi_{p}\right) \bmod \mathrm{I}_{p}\right)_{p \text { prime }}
\end{aligned}
$$

which satisfies $\varphi_{k}^{\mathcal{A}}(\mathrm{c}(\mathbf{k}))=\zeta_{\mathcal{A}}(\mathbf{k})$.

Example

Relations between the c give relation between Finite MZV

$$
\begin{gathered}
\mathrm{c}(4,1)-\mathrm{c}(1,4)+\mathrm{c}(3,2)=0 \\
\xi_{\varphi_{5}^{A}} \\
\zeta_{\mathcal{A}}(4,1)-\zeta_{\mathcal{A}}(1,4)+\zeta_{\mathcal{A}}(3,2)=0
\end{gathered}
$$

(3) Kaneko-Zagier Conjecture-Revisited

The Kaneko-Zagier conjecture, i.e. $\varphi_{K Z}$ in the diagram below is an isomorphism, implies the following commutative diagram

So it is natural to conjecture the following.

Conjecture

We have $\operatorname{ker} \varphi_{k}^{\mathcal{A}}=\operatorname{ker} \varphi_{k}^{\mathcal{S}}$.

Question

How does the kernel of $\varphi_{k}^{\mathcal{A}}$ and $\varphi_{k}^{\mathcal{S}}$ look like?

(3) Multiple harmonic q-series - cyclotomic case: Dimensions

Clearly we have $\mathcal{C}_{k-1} \subset \operatorname{ker} \varphi_{k}^{\mathcal{A}}$ and $\mathcal{C}_{k-1} \subset \operatorname{ker} \varphi_{k}^{\mathcal{S}}$, so we define

$$
\operatorname{gr}_{k} \mathcal{C}=\mathcal{C}_{k} / \mathcal{C}_{k-1}
$$

By numerical experiments we get the following:

k	1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{dim}_{\mathbb{Q}} \operatorname{gr}_{k} \mathcal{C} \stackrel{?}{=}$	1	1	2	2	4	5	8	12	17	27	38	57
$\operatorname{dim}_{\mathbb{Q}} \mathcal{Z}_{k}^{\mathcal{A}} \stackrel{?}{=}$	0	0	1	0	1	1	1	2	2	3	4	5

Current work

Try to understand...

- ... the relations in \mathcal{C}_{k}.
- ... how to describe the kernel of $\varphi_{k}^{\mathcal{A}}$ and $\varphi_{k}^{\mathcal{S}}$.

(3) Multiple harmonic q-series - cyclotomic case: Quantum MF

Definition (Zagier)

A function $f: \mathbb{Q} \rightarrow \mathbb{C}$ is called a quantum modular form of weight k for $\Gamma \subset \mathrm{Sl}_{2}(\mathbb{Z})$, if the function $h_{\gamma}: \mathbb{Q} /\left\{\gamma^{-1}(\infty)\right\} \rightarrow \mathbb{C}$ defined by

$$
h_{\gamma}(\tau)=f(\tau)-f_{\left.\right|_{k} \gamma}(\tau)
$$

has some property of continuity or analyticity for every element $\gamma \in \Gamma$.
Here $f_{\left.\right|_{k} \gamma}(\tau)=(c \tau+d)^{-k} f\left(\frac{a \tau+b}{c \tau+d}\right)$ for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$.

(3) Multiple harmonic q-series - cyclotomic case: Quantum MF

Define for $\gamma \in \mathrm{Sl}_{2}(\mathbb{Z})$ and an indexset \mathbf{k}

$$
h_{\gamma}(\mathbf{k} ; \tau)=\mathrm{c}\left(\mathbf{k} ; e^{2 \pi i \tau}\right)-\mathrm{c}_{\left.\right|_{\mathrm{wt}(\mathbf{k}) \gamma}}\left(\mathbf{k} ; e^{2 \pi i \tau}\right)
$$

and write $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

Proposition

For $k \geq 1$ we have

$$
h_{S}(k ; \tau)=(-1)^{k-1} \frac{B_{k}}{k!} \cdot\left(\frac{1}{\tau^{k}}-1\right)
$$

i.e. $\mathrm{c}(k)$ is a quantum modular form of weight k.

(3) Multiple harmonic q-series - cyclotomic case: Quantum MF

Figure: The graphs of $\mathrm{c}(4 ; \tau)$ and $h_{S}(4 ; \tau)=\mathrm{c}(4 ; \tau)-\frac{1}{\tau^{4}} \mathrm{c}\left(4 ;-\frac{1}{\tau}\right)$

Question

- Are there other examples in higher depths, which give quantum modular forms?
- Does this have any application/meaning for finite \& symmetrized MZV?

Classical case $\quad q=e^{2 \pi i \tau}$ $\tau \in \mathbb{H} \quad \mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$

Cyclotomic case

$$
\tau \in \mathbb{Q}
$$

quantum

Thank you very much for your attention!
Slides are available on my homepage: www.henrikbachmann.com

