Checkerboard style Schur multiple zeta values
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(1) MZV - Multiple zeta values

Fork1,...,k._1 > 1,k > 2 define the multiple zeta value (MZV)

Clhay k)= ) %GR.

Fr
O<my<--<my, M1 T

weight: k1 + - - - + k., depth: 7.

@ Today we will talk about explicit evaluations of these numbers.

@ Inthe case r = 1 these are just the classical Riemann zeta values
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Eulers formulas {(2) = %2 and ((4) = g—é are a special cases of
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Both formulas can be proven easily using generating series, e.g.
e 2n
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For all k > 2 we have

i.e. in particular ¢ (2, . . ., 2k) € Q[r?].



Theorem (Borwein-Bradley-Broadhurst-Lisonek)

Forallm > 1 we have

) 7T4n

1 n
(4n+2)! AL

¢(1,3,...,1,3) =C({1,3}") =

@ This identity was first conjectured by Zagier.

@ Nowadays there are various different generalization of this formula .



11.2. Proof of Zagier’s Conjecture. Let oFj(a.b: ¢ x) denote the Gaussian hy-

pergeometric function. Then:

Theorem 11.1.

(11.1) ZL 3,1} )"
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Proof. Both sides of the putative identity start
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and are annihilated by the differential operator

A\ ( d\*
o o . _ 4
Day = ((1 .l)(ll’) (.1 d.l‘) 1.

Once discovered, this can be checked in Mathematica or Maple.

A WARNING

Different order
of summation
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., 1, 3) - Original proof

Corollary 2. (Zagier's (‘onjecture)[ For all nonnegative integers n,

(g = 2

(4n + 2)!
. ) ) Different order
Proof. Gauss's oF summation theorem gives B SuIation
1 sin(ma) e

oFi(a. —a;1:1) = Ti—aT(isa) i

Hence, setting # = 1 in the generating function (L1.1)). we have
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-¢(1,3,...,1,3) - Combinatorial proof

The identity ({1, 3}") = %C({él}") can be proven by using (finite) double shuffle
relations (Borwein-Bradley-Broadhurst):
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(1) Mzv-¢(1,3,...,1,3) - Combinatorial proof

The identity ¢ ({1, 3}") = ¢ ({4}™) can be proven by using (finite) double shuffle
relations (Borwein-Bradley-Broadhurst):

n
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r=—n
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This implies that this identity also holds for Multiple Eisenstein-series, i.e.
1
G{1,3}" (T) = 4—nG{4}n (’T) .

But in contrast to MZV they are both in general not multiples of G4y, (7’) if n > 3, because
of the existence of cusp forms.



There is also a 3-1-3-Formula:

Theorem (Bowman-Bradley)

Forallm > 1 we have

n

€3, 11,31") = 7 (- 1)Feak +3)c({4)" ).

k=0

The proof is again done by guessing the correct generating series and show that it
vanishes under a certain differential operator.



(1) MzV -Star-version & 1,3, ...,1,3

Forki,...,kr_1 > 1,k > 2 define the multiple zeta-star value (MZSV)

) 1
Gl k)= Y ——— €R.

For
0<my<--<my ML 7T

Theorem (Muneta)

Forallm > 1 we have
¢*({1,3}™) = complicated but explicit coefficient - 74" € Q7" .

Goal
@ Introduce Schur multiple zeta values as a generalization of MZV and MZSV.

@ Show 13-formulas for Schur multiple zeta values.



(2) Schur M2V - Partitions

@ By a partition (of A\; + - - - + Ap) we denote atuple A = (A1, ..., Ap) with
A1=> 2 A, 2> 1

o lIts transpose is denoted by A" = (\], ..., )\%,) and it is defined by

transposing the corresponding Young diagram.

Example
A partition and its transpose visualized by Young diagrams

A=) =g ¥=(211L1)=f

L




(2) Schur MZV - Partitions & Young Tableaux

Let A = (A1, ..., \p) be a partition.
@ For another partition 4 = (f41, . . ., fir) we write p C A if 7 < h and
py < Ajforg=1,...,7.
@ For partitions A, 1 with 1 C A we define

D/ ={(,j) €Z® |1 <i<h,u; <j<\N}.
@ We denote the set of all corners of A\ /1 by Cor(A/p) C D(A\/p).

Example When A/ = (5,4, 3)/(3,1) we have

DA p) ={(1,4),(1,5),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3)},
COI‘()\/;L) = {(17 5)7 (27 4)7 (37 3)} ’

which we visualize (Corners = ®) in the corresponding Young diagram:

Hanty
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(2) Schur MZV - Partitions & Young Tableaux

o A (skew) Young tableau k = (k; ;) of shape A/ft is a collection of k; j € N for
all (i, 7) € D(A ).

Example When A/ = (5,4, 3)/(3, 1) we visualize this Young tableau by

k1,ak1,5
k = (ki,j) = k2 2k2 3lk2,4
‘k3,1k3,2k3,3

@ A Young tableau (mm) is called semi-standard if ™m; ; < M1 j and
mi ; < mg; ;41 for all zand j.

@ The set of all Young tableaux and all semi-standard Young tableaux of shape )\/u

are denoted by 7'(A /) and SSYT (A/ ), respectively.

11/32



(2) Schur M2V - Definition

We call a Young tableau k = (k; ;) € T'(\/11) admissible if k; j > 2 for
(i) € Cor(\/n)

Definition

For an admissible k = (k; j) € T'(\/11) the Schur multiple zeta value is defined by

(k) = Z H 11] ’

(mi,;)ESSYT(A/p) (i,) €D/ ) M55

These generalize MZV and MZSV in the following way.

12/32



(2) Schur MZV - Definition - Examples

Example 1 Fora > 1and b, ¢ > 2 we have

a b‘ 1
C( )Z b '

A
me

Clearly every Schur M2V is just a linear combination of M2V, e.g.

C( Z b) = ((a,c,b) +C(a,b,c)+((a+b,¢c) + ((a,b+¢).

13/32



(2) Schur MZV - Definition - Examples

Example 2
Fora,b,d > landc,e, f > 2 we have

alb c‘ 1
C dle = Z 7 7 7
a . . C . . (SN
I e < mp < me Ma My " MG Mg - Mg - My
T A AN
mdgme
A
mr

Example 3
Forb,d > landc,e, f > 2 we have

b C‘ 1
C dle = E b d f-
.mC . .me .
/] my < me MMM " Mg " Me " My
mqg < me

2
14/32



(2) Schur M2V - Products

Compared to multiple zeta values, the product of two arbitrary Schur multiple zeta
values can be written quite easily.

Example The harmonic product formula of MZV is given by

(@ =3 -3

m>0 n>0
1 1 1
- Z manb + Z manb + Z ma+b
0<m<n 0<n<m m=n>0

= ((a,b) + ¢(b,a) + ((a+1D).

Using the notion of Schur MZV this can be written as

(@@= Y gt Y

0<m<n 0<n<m

15/32



(2) Schur M2V - Products

Compared to multiple zeta values, the product of two arbitrary Schur multiple zeta
values can be written quite easily.

Example The harmonic product formula of MZV is given by
¢(a) - ¢(b,c) =((a,b,¢) +¢(b,a,c) + ((b,c,a) + ((a+b,c) + ((b,a+c).

Using the notion of Schur MZV this can be written as

@ ¢( ) =¢(ft) +¢

15/32



(2) Schur M2V - Products

In general the product of two Schur MZV is always the sum of two Schur MZV.

1

Example

olafo]

><(f3>:< ;

[SRESUECEN

16/32



(2) Schur MZV - Integral expression

Theorem (Kaneko-Yamamoto)

For every indexsets k = (k1,...,k;),1 = (l1,...,ls), M = k; + l5 we have

¢ | =cxerm =1 ,

Lo | oo |ls—a | M

where the right-hand side is given by a Yamamoto 2-poset integral.

Example k = (4,1),1 = (3,2,2):

4]
‘“(32 3)21




(2) Schur MZV - Integral expression

The result of Kaneko-Yamamoto can be generalized to arbitrary ribbons.

hlilj]
g
el f
‘a‘b‘c d

Theorem (Nakasuji-Phuksuwan-Yamasaki)

Every Schur MZV of ribbon shape can be written as a Yamamoto 2-poset integral.

Can an arbitrary Schur MZV be written as a 2-poset integral?

alb _ 1 .
C(cd)_ 2 mg-mi-mz-mz_1< ?)

mae < mp
A A
me < mg

18/32



(2) Schur MZV - Special types of Young tableux & Regularized MZV

To state the Jacobi-Trudi formula we need the following notations.

o Let 79128 ( )\ /11) be the subset of T'(\ /1) consisting of all Young tableaux with
the same entries on the diagonal.

Example
2[1]6]8]
915121 )
395 e T998((5,4,4,2,1)/(1)).
13
5
e Denote for k1, ...,k > 1by (*(k1,..., k) the stuffle regularized

multiple zeta value (with (*(1) = 0).

Example

T
*
—~
—_
~—
T

"(2) =¢"(1,2) + ¢ (2, 1) +¢7(3),
¢(2,1) = =¢(1,2) = ¢(3) = —2¢(3).-

19/32



(2) Schur MZV - Regularized Jacobi-Trudi formula

Let A\ = (A1,...,A\n)and = (fu1, . . ., fiy) be partitions with po C .

Regularized Jacobi-Trudi formula (Nakasuji-Phuksuwan-Yamasaki, B.-Charlton)

For an admissible Young tableau k = (k; ;) € T4%8(\/p) and d;—; = k; j we have

¢(k) = det (C*(d_u;-i,-j—l’ d—u;.+j—27 ce d—u;ﬂ—()\;—u}—iﬂ)))1<ij<)\1 ’

Lit N, =l —i+j=0

Wherewesetc*(m):{OifA’ W,—i+3j<0
i My

20/32



(2) Schur MZV - Jacobi-Trudi formula - Example

Lets do the following example together on the board...

Example
@l ) o) (o d)
¢ ||d-1| do = ¢(do) ¢(do, dy) C(do, dy,dz)
d_s 0 1 C<d2)
[ e | ((doz,d_1) ((d—g,...,d1) C(d—s,...,ds)
¢ |l|d-1|do = 1 ¢(do,dy) C(do, dy,dz)
_2 0 1 ¢(d2)

21/32



(3) Checkerboard Schur MZV - Definition

@ In the following we will be interested in Checkerboard style Schur MZV, i.e.
Schur MZV with alternating entries @ > 1 and b > 2.

22/32



(3) Checkerboard Schur MZV - Definition

@ In the following we will be interested in Checkerboard style Schur MZV, i.e.
Schur MZV with alternating entries @ > 1 and b > 2.
(b is always located in the corners).

@ By the Jacobi-Trudi formula these are always polynomials in the following 4-types

of MZV (for some . > 0)

(({a,b}"), ¢"({b;a}"), (b, {a,0}"), ((a,{b,a}").

Example
B
bla C(a,b)  C(b,{a,b}%) ¢(b,{a,b}?)
¢ alb| | = 1 ¢(ba,b)  ((b,{a,b}?)
“ b 0 ¢(b) ¢(b, a,b)

= ((a,b)¢(b,a,0)* + ¢(b)¢ (b, {a, b}?)
= ¢(b,a,0)¢(b, {a, b}*) = ¢(b)¢(a, b)C (b, {a,b}?).

22/32



(3) Checkerboard Schur MZV - The A and B stairs

Definefora > 1,b > 2andan > 1and m > 0 the two Schur MZV

a alb]
An) = Agp(m) = ¢ | ) B(m) = Bap(m) = ¢ | (110
[alb 0

where 1 and ™ denote number of .

@ It turns out that, for many shapes, the entries in the matrices in the Jacobi-Trudi
formula can be written in terms of these stairs.

o Inthecase (a,b) = (1, 3) the A1 3 and B 3 have nice evaluations.

23/32



(3) Checkerboard Schur MZV - Thick stairs

Theorem (B.-Yamasaki) (Rough statement)

The Checkerboard style Schur MZV of "thick stairs" are given by Hankel-determinants in the
stairs B(m).

Example

e\ o) B BE) Aot

a a a a B(2) B(3)
¢| [Blalb = |B(1) B(2) B@®)|, ¢|[bla]b = ,

cg b B(2) B(3) B(4) (g b ‘B(?’) B(4)

5 b ¢ b 0 0 B(0) B(1) alb]
- _ 0  B(0) B(1) B(2) & _

R ) =~lso) B) BO) BO)| ¢| Gk | =B

5] B(1) B(2) B(3) B(4) 5]

24/32



(3) Checkerboard Schur MZV - Comments

@ Also for other shapes it seems that the matrices can be written in a nice form
using stairs. (current work with S. Charlton).

@ Maybe there is a variation of the Jacobi-Trudi formula, which gives directly a
determinant of matrices in stairs(?)

In the following we will focus on the case (a, b) = (1, 3).

25/32



(3) Checkerboard Schur MZV - Evalutation of A; 3 and B 3

:
N: number of.

Theorem (B.-Yamasaki)

Forany n > 1 we have

1]
| g | = meun ), ¢

—_
w

1
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(3) Checkerboard Schur MZV - Evalutation of A; 3 and B 3

:
7: number of.

Theorem (B.-Yamasaki)

Forany n > 1 we have

1
| gt | = mcnrn, of g | = meanta).

—_
w

1

@ Similar to the original proof of the 1-3-Formula we give an explicit expression for
the generating series of these numbers.

@ These are also given by certain combination of hypergeometric functions.

26/32



(3) Checkerboard Schur MZV - Evalutation of A; 3 and B 3

:
N: number of.

Theorem (B.-Yamasaki)

Forany n > 1 we have

1 1]3]
| g | = montn, of gt | = n+3).

\13

Example

g(ulz,g): > ;—ig(n).

(a1a2a3)3 blbg N 16
s a3

Question: Elementary proof for this?
26/32



(3) Checkerboard Schur MZV - Thick stairs for (a, b) = (1, 3)

First consequence of the Theorem: The thick stairs in the case (a, b) = (1, 3) are
Hankel-determinants in odd zeta values.

Example
LB 1@
C(;?’ )‘4‘2«7) ¢}
3[1]3]1]3]
1[3]1 1 [€B) <) (1)
Cl3]1]3 =6 |1 ¢(11) ¢(15)
;3 ¢(11) ¢(15) ¢(19)

27/32



(3) Checkerboard Schur MZV - Thick stairs for (a, b) = (1, 3)

First consequence of the Theorem: The thick stairs in the case (a, b) = (1, 3) are
Hankel-determinants in odd zeta values.

Example
1[3]1]3
1313
¢|[3]1 _ 1 (e(11)  ¢(15))
1B 46 [¢(15)  ¢(19)
3]
s 0 0 <¢B) <7
¢|[3 ? i _ 1o <@ <n <anp
13 441¢(3)  ¢(n <) ¢15)
3 ¢(7) ¢(11) ¢(15) ¢(19)

27/32



(3) Checkerboard Schur MZV - 1-3-Formulas for non-admissible MZV

Second consequence of the Theorem: We get 1-3-Formulas for the (non-admissible)
stuffle regularized MZV:

Theorem (B.-Yamasaki, B.-Charlton)

Forn > 0 we have
C{13}"1) = g 12 C(47 + "),

Cr({3,1}") = 222 3 Z (=1)7T5¢ (45 + 1)¢(4k + 3)¢ ({4} I717F)
1<js<n—1
0<k<n—1—j

)Y R4
k=0

28/32



(3) Checkerboard Schur MzV - 13-Schur MzV

Third consequence of the Theorem: Every Checkerboard Schur MZV is a polynomial
in odd single zetas and 74,

Theorem (B.-Yamasaki, B.-Charlton)

Schur MZV with alternating entries in 1 and 3 are elements in Q[7%, ((3), ¢(5), . . . ].

@ We can give explicit formulas for a lot of shapes as determinants in odd zeta
values and powers of 4.

Example
3[1]3 1 166) i ¢(7)
S REEIE ~ 39 7 452 90720
3|13 (7)) meme $(11)

29/32



(3) Checkerboard Schur MZV - Another 1-3-Stairs Formula

With the notion of Schur MZV the identity ({1, 3}") = 4%(({4}71) reads

1 n
= Cam).

30/32



(3) Checkerboard Schur MZV - Another 1-3-Stairs Formula

With the notion of Schur M2V the identity C({1,3}") = £ ¢({4}") reads

1
¢ = =S
Theorem (B.-Yamasaki)
Forany 1 > 1 we have
5 1
- 3 * n
3

—_

3‘ @ 1
K — * 4 k 4 n—k ,
C(l it ) k§:O—4kC ({43")¢({43" ")

where 7 is the number of g and respectively.

30/32



(3) Checkerboard Schur MZV - 1-2-Stairs

We have

Aya(n) =¢ : ::: =3¢3n+1)
[1]2
but in general it is
1]2]

Bia(n) =¢ | prats | £QUH) k22,

Also easy to check:

S =,

31/32



@ Schur MZV generalize MZV and MZSV into one object.

@ The algebraic structure of Schur MZV is easy to describe.

@ Checkerboard style Schur multiple zeta values can be written as matrices in stairs.
@ Inthe 1-3-case, these stairs are odd single zeta values.

e For other values of (@, b), besides (1,2) and (1, 3), there are no known resuits.

@ There are various further open problems regarding Schur MZV.
(work in progress with Yamasaki, Suzuki and Kadota: Sum formulas).

32/32



@ Schur MZV generalize MZV and MZSV into one object.

@ The algebraic structure of Schur MZV is easy to describe.

@ Checkerboard style Schur multiple zeta values can be written as matrices in stairs.
@ Inthe 1-3-case, these stairs are odd single zeta values.

e For other values of (@, b), besides (1,2) and (1, 3), there are no known resuits.

@ There are various further open problems regarding Schur MZV.
(work in progress with Yamasaki, Suzuki and Kadota: Sum formulas).
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