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1© MZV - Multiple zeta values

Definition

For k1, . . . , kr−1 ≥ 1,kr ≥ 2 define the multiple zeta value (MZV)

ζ(k1, . . . , kr) =
∑

0<m1<···<mr

1

mk1
1 · · ·m

kr
r

∈ R .

weight: k1 + · · ·+ kr , depth: r.

Today we will talk about explicit evaluations of these numbers.

In the case r = 1 these are just the classical Riemann zeta values

ζ(k) =
∑
m>0

1

mk
, ζ(2) =

π2

6
, ζ(3) /∈ Q , ζ(4) =

π4

90
, . . . .

1 / 32



1© MZV -ζ(k, . . . , k)

Eulers formulas ζ(2) = π2

6 and ζ(4) = π4

90 are a special cases of

ζ({2}n) := ζ(2, ..., 2︸ ︷︷ ︸
n

) =
π2n

(2n+ 1)!
, ζ({4}n) = 22n+1π4n

(4n+ 2)!
.

Both formulas can be proven easily using generating series, e.g.

∞∑
n=0

ζ({2}n)T 2n+1 = T

∞∏
m=1

(
1 +

T 2

m2

)
=

sin (πiT )

πi
=

∞∑
n=0

π2n

(2n+ 1)!
T 2n+1 .

Proposition

For all k ≥ 2 we have

ζ(k, . . . , k) ∈ Q[ζ(k ·m) | m ≥ 1] ,

i.e. in particular ζ(2k, . . . , 2k) ∈ Q[π2].
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1© MZV -ζ(1, 3, . . . , 1, 3)

Theorem (Borwein-Bradley-Broadhurst-Lisonek)

For all n ≥ 1 we have

ζ(1, 3, . . . , 1, 3) = ζ({1, 3}n) = 2π4n

(4n+ 2)!
=

1

4n
ζ({4}n) .

This identity was first conjectured by Zagier.

Nowadays there are various different generalization of this formula .
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1© MZV -ζ(1, 3, . . . , 1, 3) - Original proof

J. Borwein, D. Bradley, D. Broadhurst and P. Lisonek: "Special values of multiple polylogarithms",

Trans. Amer. Math. Soc., 353 (2001), no. 3, 907–941.
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1© MZV -ζ(1, 3, . . . , 1, 3) - Combinatorial proof

The identity ζ({1, 3}n) = 1
4n ζ({4}

n) can be proven by using (finite) double shuffle

relations (Borwein-Bradley-Broadhurst):

n∑
r=−n

(−1)rζ({2}n−r)ζ({2}n+r) shuffle product
= 4nζ({1, 3}n) ,

n∑
r=−n

(−1)rζ({2}n−r)ζ({2}n+r) stuffle product
= ζ({4}n) .

Remark

This implies that this identity also holds for Multiple Eisenstein-series, i.e.

G{1,3}n(τ) =
1

4n
G{4}n(τ) .

But in contrast to MZV they are both in general not multiples ofG4n(τ) if n ≥ 3, because

of the existence of cusp forms.
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1© MZV -ζ(3, 1, 3, . . . , 1, 3)

There is also a 3-1-3-Formula:

Theorem (Bowman-Bradley)

For all n ≥ 1 we have

ζ(3, {1, 3}n) = 1

4n

n∑
k=0

(−1)kζ(4k + 3)ζ({4}n−k) .

The proof is again done by guessing the correct generating series and show that it

vanishes under a certain differential operator.
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1© MZV - Star-version & 1, 3, . . . , 1, 3

Definition

For k1, . . . , kr−1 ≥ 1,kr ≥ 2 define the multiple zeta-star value (MZSV)

ζ?(k1, . . . , kr) =
∑

0<m1≤···≤mr

1

mk1
1 · · ·m

kr
r

∈ R .

Theorem (Muneta)

For all n ≥ 1 we have

ζ?({1, 3}n) = complicated but explicit coefficient · π4n ∈ Qπ4n .

Goal

Introduce Schur multiple zeta values as a generalization of MZV and MZSV.

Show 13-formulas for Schur multiple zeta values.
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2© Schur MZV - Partitions

By a partition (of λ1 + · · ·+ λh) we denote a tuple λ = (λ1, . . . , λh) with

λ1 ≥ · · · ≥ λh ≥ 1.

Its transpose is denoted by λ′ = (λ′1, . . . , λ
′
h′) and it is defined by

transposing the corresponding Young diagram.

Example

A partition and its transpose visualized by Young diagrams

λ = (5, 2, 1) = λ′ = (3, 2, 1, 1, 1) =
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2© Schur MZV - Partitions & Young Tableaux

Let λ = (λ1, . . . , λh) be a partition.

For another partition µ = (µ1, . . . , µr) we write µ ⊂ λ if r ≤ h and

µj < λj for j = 1, . . . , r.

For partitions λ, µ with µ ⊂ λ we define

D(λ/µ) =
{
(i, j) ∈ Z2 | 1 ≤ i ≤ h , µi < j ≤ λi

}
.

We denote the set of all corners of λ/µ by Cor(λ/µ) ⊂ D(λ/µ).

Example When λ/µ = (5, 4, 3)/(3, 1) we have

D(λ/µ) = {(1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3)} ,
Cor(λ/µ) = {(1, 5), (2, 4), (3, 3)} ,

which we visualize (Corners = •) in the corresponding Young diagram:

•
•

•
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2© Schur MZV - Partitions & Young Tableaux

A (skew) Young tableau k = (ki,j) of shape λ/µ is a collection of ki,j ∈ N for

all (i, j) ∈ D(λ/µ).

Example When λ/µ = (5, 4, 3)/(3, 1) we visualize this Young tableau by

k = (ki,j) =

k1,4k1,5

k2,2k2,3k2,4

k3,1k3,2k3,3

.

A Young tableau (mi,j) is called semi-standard ifmi,j < mi+1,j and

mi,j ≤ mi,j+1 for all i and j.

The set of all Young tableaux and all semi-standard Young tableaux of shape λ/µ
are denoted by T (λ/µ) and SSYT(λ/µ), respectively.
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2© Schur MZV - Definition

We call a Young tableau k = (ki,j) ∈ T (λ/µ) admissible if ki,j ≥ 2 for

(i, j) ∈ Cor(λ/µ).

Definition

For an admissible k = (ki,j) ∈ T (λ/µ) the Schur multiple zeta value is defined by

ζ(k) =
∑

(mi,j)∈SSYT(λ/µ)

∏
(i,j)∈D(λ/µ)

1

m
ki,j
i,j

.

These generalize MZV and MZSV in the following way.

ζ(k1, . . . , kr) = ζ

 k1
...

kr

 and ζ?(k1, . . . , kr) = ζ
(
k1 · · · kr

)
.
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2© Schur MZV - Definition - Examples

Example 1 For a ≥ 1 and b, c ≥ 2 we have

ζ

(
a b

c

)
=

∑
ma ≤ mb<

mc

1

ma
a ·mb

b ·mc
c

.

Clearly every Schur MZV is just a linear combination of MZV, e.g.

ζ

(
a b

c

)
= ζ(a, c, b) + ζ(a, b, c) + ζ(a+ b, c) + ζ(a, b+ c) .
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2© Schur MZV - Definition - Examples

Example 2

For a, b, d ≥ 1 and c, e, f ≥ 2 we have

ζ

 a b c

d e

f

 =
∑

ma ≤ mb ≤ mc< <

md ≤ me<

mf

1

ma
a ·mb

b ·mc
c ·md

d ·me
e ·m

f
f

.

Example 3

For b, d ≥ 1 and c, e, f ≥ 2 we have

ζ

 b c

d e

f

 =
∑
mb ≤ mc<

md ≤ me<

mf

1

mb
b ·mc

c ·md
d ·me

e ·m
f
f

.
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2© Schur MZV - Products

Compared to multiple zeta values, the product of two arbitrary Schur multiple zeta

values can be written quite easily.

Example The harmonic product formula of MZV is given by

ζ(a) · ζ(b) =
∑
m>0

1

ma

∑
n>0

1

nb

=
∑

0<m<n

1

manb
+

∑
0<n<m

1

manb
+

∑
m=n>0

1

ma+b

= ζ(a, b) + ζ(b, a) + ζ(a+ b) .

Using the notion of Schur MZV this can be written as

ζ( a ) ζ( b ) =
∑

0<m≤n

1

manb
+

∑
0<n<m

1

manb
= ζ( a b ) + ζ

(
b
a

)
.
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a
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2© Schur MZV - Products

In general the product of two Schur MZV is always the sum of two Schur MZV.

Example

ζ

(
e

b d
a c

)
ζ

(
h

f g

)
= ζ


h

f g
e

b d
a c

+ ζ

 h
e f g

b d
a c

 .

16 / 32



2© Schur MZV - Integral expression

Theorem (Kaneko-Yamamoto)

For every indexsets k = (k1, . . . , kr), l = (l1, . . . , ls),M = kr + ls we have

ζ


k1

...

kr−1

l1 . . . ls−1 M

 =: ζ(k~ l?) = I

 k

l
 ,

where the right-hand side is given by a Yamamoto 2-poset integral.

Example k = (4, 1), l = (3, 2, 2):

ζ

(
4

3 2 3

)
= I
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2© Schur MZV - Integral expression

The result of Kaneko-Yamamoto can be generalized to arbitrary ribbons.

h i j

g

e f

a b c d

Theorem (Nakasuji-Phuksuwan-Yamasaki)

Every Schur MZV of ribbon shape can be written as a Yamamoto 2-poset integral.

Open question

Can an arbitrary Schur MZV be written as a 2-poset integral?

ζ

(
a b

c d

)
=

∑
ma ≤ mb< <

mc ≤ md

1

ma
a ·mb

b ·mc
c ·md

d

= I

(
?

)
.
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2© Schur MZV - Special types of Young tableux & Regularized MZV

To state the Jacobi-Trudi formula we need the following notations.

Let T diag(λ/µ) be the subset of T (λ/µ) consisting of all Young tableaux with

the same entries on the diagonal.

Example
2 1 6 8

9 5 2 1

3 9 5 2

1 3

5

∈ T diag((5, 4, 4, 2, 1)/(1)) .

Denote for k1, . . . , kr ≥ 1 by ζ∗(k1, . . . , kr) the stuffle regularized

multiple zeta value (with ζ∗(1) = 0).

Example

ζ∗(1) · ζ∗(2) = ζ∗(1, 2) + ζ∗(2, 1) + ζ∗(3) ,

ζ∗(2, 1) = −ζ(1, 2)− ζ(3) = −2ζ(3) .
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2© Schur MZV - Regularized Jacobi-Trudi formula

Let λ = (λ1, . . . , λh) and µ = (µ1, . . . , µr) be partitions with µ ⊂ λ.

Regularized Jacobi-Trudi formula (Nakasuji-Phuksuwan-Yamasaki, B.-Charlton)

For an admissible Young tableau k = (ki,j) ∈ T diag(λ/µ) and di−j = ki,j we have

ζ(k) = det
(
ζ∗(d−µ′j+j−1, d−µ′j+j−2, . . . , d−µ′j+j−(λ′i−µ′j−i+j))

)
1≤i,j≤λ1

,

where we set ζ∗( · · · ) =

{
1 if λ′i − µ′j − i+ j = 0

0 if λ′i − µ′j − i+ j < 0
.
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2© Schur MZV - Jacobi-Trudi formula - Example

Lets do the following example together on the board...

Example

ζ


d0 d1 d2

d−1 d0

d−2

 =

∣∣∣∣∣∣
ζ(d−2, d−1, d0) ζ(d−2, . . . , d1) ζ(d−2, . . . , d2)

ζ(d0) ζ(d0, d1) ζ(d0, d1, d2)
0 1 ζ(d2)

∣∣∣∣∣∣

ζ


d1 d2

d−1 d0

d−2

 =

∣∣∣∣∣∣
ζ(d−2, d−1) ζ(d−2, . . . , d1) ζ(d−2, . . . , d2)

1 ζ(d0, d1) ζ(d0, d1, d2)
0 1 ζ(d2)

∣∣∣∣∣∣

21 / 32



3© Checkerboard Schur MZV - Definition

In the following we will be interested in Checkerboard style Schur MZV, i.e.

Schur MZV with alternating entries a ≥ 1 and b ≥ 2.

(b is always located in the corners).

By the Jacobi-Trudi formula these are always polynomials in the following 4-types

of MZV (for some n ≥ 0)

ζ({a, b}n) , ζ∗({b, a}n) , ζ(b, {a, b}n) , ζ∗(a, {b, a}n) .

Example

ζ


b

b a
a b

a b
b

 =

∣∣∣∣∣∣
ζ(a, b) ζ(b, {a, b}2) ζ(b, {a, b}3)

1 ζ(b, a, b) ζ(b, {a, b}2)
0 ζ(b) ζ(b, a, b)

∣∣∣∣∣∣
= ζ(a, b)ζ(b, a, b)2 + ζ(b)ζ(b, {a, b}3)
− ζ(b, a, b)ζ(b, {a, b}2)− ζ(b)ζ(a, b)ζ(b, {a, b}2) .
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3© Checkerboard Schur MZV - The A and B stairs

Define for a ≥ 1, b ≥ 2 and a n ≥ 1 andm ≥ 0 the two Schur MZV

A(n) = Aa,b(n) = ζ

 a

. .
. b

a . .
.

a b

 , B(m) = Ba,b(m) = ζ

 a b

. .
. b

a . .
.

b

 ,

where n andm denote number of
a

b
.

It turns out that, for many shapes, the entries in the matrices in the Jacobi-Trudi

formula can be written in terms of these stairs.

In the case (a, b) = (1, 3) theA1,3 andB1,3 have nice evaluations.
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3© Checkerboard Schur MZV - Thick stairs

Theorem (B.-Yamasaki) (Rough statement)

The Checkerboard style Schur MZV of "thick stairs" are given by Hankel-determinants in the

stairsB(m).

Example

ζ


b a b a b
a b a b
b a b
a b
b

 =

∣∣∣∣∣∣
B(0) B(1) B(2)
B(1) B(2) B(3)
B(2) B(3) B(4)

∣∣∣∣∣∣ , ζ


a b a b

a b a b
b a b
a b
b

 =

∣∣∣∣B(2) B(3)
B(3) B(4)

∣∣∣∣ ,

ζ


b a b

b a b
b a b
a b
b

 = −

∣∣∣∣∣∣∣∣
0 0 B(0) B(1)
0 B(0) B(1) B(2)

B(0) B(1) B(2) B(3)
B(1) B(2) B(3) B(4)

∣∣∣∣∣∣∣∣ , ζ


a b

a b
a b

a b
b

 =
∣∣B(4)

∣∣.
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3© Checkerboard Schur MZV - Comments

Also for other shapes it seems that the matrices can be written in a nice form

using stairs. (current work with S. Charlton).

Maybe there is a variation of the Jacobi-Trudi formula, which gives directly a

determinant of matrices in stairs(?)

In the following we will focus on the case (a, b) = (1, 3).
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3© Checkerboard Schur MZV - Evalutation ofA1,3 andB1,3

n: number of 1
3

.

Theorem (B.-Yamasaki)

For any n ≥ 1 we have

ζ


1

. .
. 3

1 . .
.

1 3

 =
2

4n
ζ(4n+ 1), ζ


1 3

. .
. 3

1 . .
.

3

 =
1

4n
ζ(4n+ 3) .
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n: number of 1
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For any n ≥ 1 we have

ζ


1

. .
. 3

1 . .
.

1 3

 =
2

4n
ζ(4n+ 1), ζ


1 3

. .
. 3

1 . .
.

3

 =
1

4n
ζ(4n+ 3) .

Similar to the original proof of the 1-3-Formula we give an explicit expression for

the generating series of these numbers.

These are also given by certain combination of hypergeometric functions.
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3© Checkerboard Schur MZV - Evalutation ofA1,3 andB1,3

n: number of 1
3

.

Theorem (B.-Yamasaki)

For any n ≥ 1 we have

ζ


1

. .
. 3

1 . .
.

1 3

 =
2

4n
ζ(4n+ 1), ζ


1 3

. .
. 3

1 . .
.

3

 =
1

4n
ζ(4n+ 3) .

Example

ζ

(
1 3

1 3
3

)
=

∑
b2 ≤ a3<

b1 ≤ a2<

a1

1

(a1a2a3)3 b1b2
=

1

16
ζ(11) .

Question: Elementary proof for this?
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3© Checkerboard Schur MZV - Thick stairs for (a, b) = (1, 3)

First consequence of the Theorem: The thick stairs in the case (a, b) = (1, 3) are

Hankel-determinants in odd zeta values.

Example

ζ

 3 1 3

1 3

3

 =
1

42

∣∣∣∣ζ(3) ζ(7)
ζ(7) ζ(11)

∣∣∣∣ ,

ζ


3 1 3 1 3

1 3 1 3

3 1 3

1 3

3

 =
1

46

∣∣∣∣∣∣
ζ(3) ζ(7) ζ(11)
ζ(7) ζ(11) ζ(15)
ζ(11) ζ(15) ζ(19)

∣∣∣∣∣∣ .
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3
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3© Checkerboard Schur MZV - 1-3-Formulas for non-admissible MZV

Second consequence of the Theorem: We get 1-3-Formulas for the (non-admissible)

stuffle regularized MZV:

Theorem (B.-Yamasaki, B.-Charlton)

For n ≥ 0 we have

ζ∗({1, 3}n, 1) = 1

22n−1

n∑
j=1

(−1)jζ(4j + 1)ζ({4}n−j) ,

ζ∗({3, 1}n) = 1

22n−3

∑
1≤j≤n−1

0≤k≤n−1−j

(−1)j+kζ(4j + 1)ζ(4k + 3)ζ({4}n−j−1−k)

+ (−1)n
n∑

k=0

1

4k
ζ?({4}k)ζ({4}n−k) .
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3© Checkerboard Schur MZV -13-Schur MZV

Third consequence of the Theorem: Every Checkerboard Schur MZV is a polynomial

in odd single zetas and π4.

Theorem (B.-Yamasaki, B.-Charlton)

Schur MZV with alternating entries in 1 and 3 are elements in Q[π4, ζ(3), ζ(5), . . . ].

We can give explicit formulas for a lot of shapes as determinants in odd zeta

values and powers of π4.

Example

ζ

 3 1 3

1 3 1

3 1 3

 =
1

32

∣∣∣∣∣∣∣
ζ(3) π4

180 ζ(7)
π4

72 ζ(5) 17π8

90720

ζ(7) 13π8

226800 ζ(11)

∣∣∣∣∣∣∣
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3© Checkerboard Schur MZV - Another 1-3-Stairs Formula

With the notion of Schur MZV the identity ζ({1, 3}n) = 1
4n ζ({4}

n) reads

ζ


1
3
...
1
3

 =
1

4n
ζ({4}n) .

Theorem (B.-Yamasaki)

For any n ≥ 1 we have

ζ

 1

. .
. 3

1 . .
.

3

 =
1

4n
ζ?({4}n) ,

ζ

(
1 3

. .
.
. .
.

1 3

)
=

n∑
k=0

1

4k
ζ?({4}k)ζ({4}n−k) ,

where n is the number of 1
3

and 1 3 respectively.
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3© Checkerboard Schur MZV - Another 1-3-Stairs Formula

With the notion of Schur MZV the identity ζ({1, 3}n) = 1
4n ζ({4}

n) reads

ζ


1
3
...
1
3

 =
1

4n
ζ({4}n) .

Theorem (B.-Yamasaki)
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. .
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1 . .
.

3
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1

4n
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.
. .
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3© Checkerboard Schur MZV - 1-2-Stairs

We have

A1,2(n) = ζ

 1

. .
. 2

1 . .
.

1 2

 = 3ζ(3n+ 1)

but in general it is

B1,2(n) = ζ

 1 2

. .
. 2

1 . .
.

2

 /∈ Q[ζ(k) | k ≥ 2] .

Also easy to check:

ζ

 1

. .
. 2

1 . .
.

2

 = ζ?({3}n) .
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Summary

Schur MZV generalize MZV and MZSV into one object.

The algebraic structure of Schur MZV is easy to describe.

Checkerboard style Schur multiple zeta values can be written as matrices in stairs.

In the 1-3-case, these stairs are odd single zeta values.

For other values of (a, b), besides (1, 2) and (1, 3), there are no known results.

There are various further open problems regarding Schur MZV.

(work in progress with Yamasaki, Suzuki and Kadota: Sum formulas).

B�LhFTVD~Y�
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