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1⃝ (quasi)modular forms - Eisenstein series

For k ≥ 2 the Eisenstein series are defined by

G(k) = −Bk

2k!
+

1

(k − 1)!

∑
n>0

nk−1qn

1− qn

k even
=

1

2(2πi)k

∑
m,n∈Z

(m,n) ̸=(0,0)

1

(mτ + n)k
(q = e2πiτ ) .

The spaces of modular forms and quasimodular forms (with rational coefficients) are given by

M =

∞⊕
k=0

Mk = Q[G(4),G(6)] ⊂ M̃ = Q[G(2),G(4),G(6)] .

By Sk ⊂ Mk we denote the space of cusp forms of weight k.
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1⃝ (quasi)modular forms - Recursive formulas for Eisenstein series

Recursive formulas for Eisenstein series

For even k ≥ 4 we have

k + 1

2
G(k) = (k − 2)q

d

dq
G(k − 2) +

∑
k1+k2=k

k1,k2≥2 even

G(k1)G(k2) .

For even k ≥ 6 we have

(k + 1)(k − 1)(k − 6)

12
G(k) =

∑
k1+k2=k

k1,k2≥4 even

(k1 − 1)(k2 − 1) G(k1)G(k2) .

Example

q
d

dq
G(2) = 5G(4)− 2G(2)2, G(8) =

6

7
G(4)2, G(10) =

10

11
G(4)G(6) .
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1⃝ (quasi)modular forms - Derivations

Fact: Every quasimodular form can be written as a polynomial in G(2) with coefficients in M.

Derivations & sl2-action

On the space M̃ we have the following three derivations:

∂ = q d
dq

d: Derivative with respect to G(2)

W : weight operator

The triple (∂,W, d) satisfies the commutation relations of an sl2-triple, i.e.

[W,∂] = 2∂, [W, d] = −2d, [d, ∂] = W.

We have M = ker d.

Consequences: Rankin-Cohen brackets.
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Formal multiple Eisenstein series
Elements
Formal symbols of the form

Product

Stuffle product

Relations

Swap invariant generating series

depth:



Possible shuffles of the two decks
(the order of cards in the same deck stays the same)

+ 5 more possibilities



Shuffle product of two decks of cards

+ 5 more summands

+ + + +



Shuffle product of two decks of cards

+ 5 more summands

+ + +2



104

10

10
4

Shuffle product of two tuples of numbers  (decks of cards with numbers)

+ 5 more summands

+ + +2

10
7
13

10

7

13
4

10

10

7

13

4
10

7

13

10
4
7

13

10

(13,7,10) (10,4)

(10,4,13,7,10).      + 2  (13,7,10,10,4) + (13,7,10,4,10) + (10,13,7,4,10) + …



Stuffle = Shuffle + to stuff

Allow two cards from different decks to get stuffed together to one card

10
4
10

7
13

A possible term in the stuffle of 
these two decks

10
7

17

10

13
4 = 4+13



4

10

Stuffle product of two tuples of numbers

+ 21 more summands

+ +2

10

7

13
4

10

10

7

13

(2,6,4) +  2 (13,7,10,4,10) +  (13,7,20,4) +          (23, 7, 14)

10
7
13(13,7,10)

4
10 (10,4)

4

20

7

13

14

7

23
+



Stuffle product for formal multiple Eisenstein series

… …

=
Example:



Formal multiple Eisenstein series
Elements
Formal symbols of the form

Product

Stuffle product

Relations

Swap invariant generating series

depth:



Conjugation of partitions

7      =        3 + 2 + 1 + 1        =         4 + 2 + 1

conjugation

Young diagram

Stanley’s coordinates
parts

multiplicity



2⃝ Formal MES - Conjugation of Young diagrams

The conjugation of a Young diagram with X1Y1 + · · ·+XrYr boxes and r stairs:

X1

X2

Xr−1

Xr

Y1

Y2

Yr−1

Yr

conjugate

Y1 + · · ·+ Yr

Y1 + · · · + Yr−1

Y1 + Y2

Y1

Xr

Xr−1 −Xr

X2 −X3

X1 −X2

Conjugation on Stanley’s coordinates(
X1, . . . , Xr

Y1, . . . , Yr

)
7−→

(
Y1 + · · ·+ Yr, . . . , Y1 + Y2, Y1
Xr, Xr−1 −Xr, . . . , X1 −X2

)
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2⃝ Formal MES - Generating series & Rough definition

We write for the generating series of the formal multiple Eisensteins series in depth r

G

(
X1, . . . , Xr

Y1, . . . , Yr

)
:=

∑
k1,...,kr≥1
d1,...,dr≥0

Gf

(
k1, . . . , kr
d1, . . . , dr

)
Xk1−1

1 . . . Xkr−1
r

Y d1
1

d1!
. . .

Y dr
r

dr!
.

Definition (Rough version)

The algebra of formal multiple Eisenstein series Gf is given by the Q-vector space spanned by the symbols

Gf
(
k1,...,kr
d1,...,dr

)
for r ≥ 1 equipped with the stuffle product, modulo the relations coming from the swap invariance:

G

(
X1, . . . , Xr

Y1, . . . , Yr

)
= G

(
Y1 + · · ·+ Yr, . . . , Y1 + Y2, Y1
Xr, Xr−1 −Xr, . . . , X1 −X2

)
.

Claim

The elements Gf
(
k
d

)
satisfy the same algebraic relations as

(
q d
dq

)d
G(k − d).
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2⃝ Formal MES - Alphabet

Now everything a little bit more precise...

Define the alphabet A by (the cards)

A =

{[
k

d

]
| k ≥ 1, d ≥ 0

}
.

On QA we define the product ⋄ for k1, k2 ≥ 1 and d1, d2 ≥ 0 by (the gluing)[
k1
d1

]
⋄
[
k2
d2

]
=

[
k1 + k2
d1 + d2

]
.

This gives a commutative non-unital Q-algebra (QA, ⋄).
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2⃝ Formal MES - Stuffle product

Q⟨A⟩: non-commutative polynomial ring in A =
{[

k
d

]
| k ≥ 1, d ≥ 0

}
. (Q-lin. comb. of decks of cards)

Definition

Define the stuffle product ∗ on Q⟨A⟩ as the Q-bilinear product, which satisfies 1 ∗ w = w ∗ 1 = w for any

word w ∈ Q⟨A⟩ and

aw ∗ bv = a(w ∗ bv) + b(aw ∗ v) + (a ⋄ b)(w ∗ v)

for any letters a, b ∈ A and words w, v ∈ Q⟨A⟩.

Proposition

(Q⟨A⟩, ∗) is a commutative Q-algebra.
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2⃝ Formal MES - Stuffle product

For k1, . . . , kr ≥ 1, d1, . . . , dr ≥ 0 we use the following notation to write words in Q⟨A⟩:[
k1, . . . , kr
d1, . . . , dr

]
:=

[
k1
d1

]
. . .

[
kr
dr

]
.

weight: k1 + · · ·+ kr + d1 + · · ·+ dr

depths: r

In smallest depths the quasi-shuffle product is given by[
k1
d1

]
∗
[
k2
d2

]
=

[
k1, k2
d1, d2

]
+

[
k2, k1
d2, d1

]
+

[
k1 + k2
d1 + d2

]
,[

k1
d1

]
∗
[
k2, k3
d2, d3

]
=

[
k1, k2, k3
d1, d2, d3

]
+

[
k2, k1, k3
d2, d1, d3

]
+

[
k2, k3, k1
d2, d3, d1

]
+

[
k1 + k2, k3
d1 + d2, d3

]
+

[
k1, k2 + k3
d1, d2 + d3

]
.
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2⃝ Formal MES - Generating series of words

We define in depth r ≥ 1 by the following formal power series in Q⟨A⟩[[X1, Y1, . . . , Xr, Yr]]

A

(
X1, . . . , Xr

Y1, . . . , Yr

)
:=

∑
k1,...,kr≥1
d1,...,dr≥0

[
k1, . . . , kr
d1, . . . , dr

]
Xk1−1

1 . . . Xkr−1
r

Y d1
1

d1!
. . .

Y dr
r

dr!
.

With this the quasi-shuffle product in smallest depths reads

A

(
X1

Y1

)
∗ A

(
X2

Y2

)
= A

(
X1, X2

Y1, Y2

)
+ A

(
X2, X1

Y2, Y1

)
+

A
(

X1

Y1+Y2

)
− A

(
X2

Y1+Y2

)
X1 −X2

.
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2⃝ Formal MES - Swap = Conjugation of the variables in the gen. series

Definition

We define the swap as the linear map σ : Q⟨A⟩ → Q⟨A⟩ by σ(1) = 1 and for r ≥ 1 on the generators of

Q⟨A⟩ by

σ

(
A

(
X1, . . . , Xr

Y1, . . . , Yr

))
:= A

(
Y1 + · · ·+ Yr, . . . , Y1 + Y2, Y1
Xr, Xr−1 −Xr, . . . , X1 −X2

)
,

where σ is applied coefficient-wise on the left, i.e. σ(
[
k1,...,kr
d1,...,dr

]
) is defined as the coefficient of

Xk1−1
1 . . . Xkr−1

r
Y

d1
1
d1!

. . . Y
dr
r
dr!

on the right-hand side.

σ

([
k

d

])
=

d!

(k − 1)!

[
d+ 1

k − 1

]
, (k ≥ 1, d ≥ 0) .
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2⃝ Formal MES - Definition

Define S as the ideal in (Q⟨A⟩, ∗) generated by all σ(w)− w for w ∈ Q⟨A⟩, i.e.

S = ⟨σ(w)− w | w ∈ Q⟨A⟩⟩Q ∗Q⟨A⟩ .

Definition

The algebra of formal multiple Eisenstein series is defined by

Gf = Q⟨A⟩⧸S

and we denote the class of a word
[
k1,...,kr
d1,...,dr

]
by Gf

(
k1,...,kr
d1,...,dr

)
.

Example

Gf

(
k

d

)
=

d!

(k − 1)!
Gf

(
d+ 1

k − 1

)
, (k ≥ 1, d ≥ 0) .
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2⃝ Formal MES - The derivation ∂

Let ∂ : (QA, ⋄) → (QA, ⋄) be the derivation defined for k ≥ 1, d ≥ 0 by

∂

([
k

d

])
= k

[
k + 1

d+ 1

]
.

This gives a derivation on Q⟨A⟩ (with respect to the concatenation product), defined by

∂

([
k1, . . . , kr
d1, . . . , dr

])
=

r∑
j=1

kj

[
k1, . . . , kj + 1, . . . , kr
d1, . . . , dj + 1, . . . , dr

]
.
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2⃝ Formal MES - The derivation ∂

Lemma

∂ is a derivation on (Q⟨A⟩, ∗).

The derivation ∂ commutes with the swap, i.e. ∂σ = σ∂.

Theorem　(B.-Matthes-van Ittersum 2022+)

∂ is a derivation on (Gf, ∗).

∂

(
Gf

(
k1, . . . , kr
d1, . . . , dr

))
=

r∑
j=1

kj G
f

(
k1, . . . , kj + 1, . . . , kr
d1, . . . , dj + 1, . . . , dr

)
.

(∂ is the formal version of q d
dq )
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2⃝ Formal MES -sl2-action

Conjecture

There exist a unique derivation d on (Q⟨A⟩, ∗) such that

d commutes with σ.

The triple (∂,W, d) satisfies the commutation relations of an sl2-triple, i.e.

[W,∂] = 2∂, [W, d] = −2d, [d, ∂] = W ,

where W is the weight operator, multiplying a word
[
k1,...,kr
d1,...,dr

]
by its weight

k1 + . . .+ kr + d1 + . . .+ dr .

This would imply an sl2-action on Gf. In depth one this derivation seems to be given by

dGf

(
k

d

)
= dGf

(
k − 1

d− 1

)
− 1

2
δk+d,2 ,

which correspond to the classical derivation for quasimodular forms (the derivative with respect to G(2)).
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2⃝ Formal MES -G(k1, . . . , kr)

For k1, . . . , kr ≥ 1 we write

Gf(k1, . . . , kr) := Gf

(
k1, . . . , kr
0, . . . , 0

)
.

Instead of ∗ we will just write products of Gf.

Theorem (B.-Matthes-van Ittersum 2022+)

For all k1, k2 ≥ 1 with k = k1 + k2 ≥ 4 even we have

1

2

((
k1 + k2

k2

)
− (−1)k1

)
Gf(k) =

k−2∑
j=2
jeven

((
k − j − 1

k1 − 1

)
+

(
k − j − 1

k2 − 1

)
− δj,k1

)
Gf(j)Gf(k − j)

+
1

2

((
k − 3

k1 − 1

)
+

(
k − 3

k2 − 1

)
+ δk1,1 + δk2,1

)
Gf

(
k − 1

1

)
.
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2⃝ Formal MES - Recursive formulas for formal Eisenstein series

Corollary

For even k ≥ 4 we have

k + 1

2
Gf(k) = Gf

(
k − 1

1

)
+

∑
k1+k2=k

k1,k2≥2 even

Gf(k1)G
f(k2) .

For all even k ≥ 6 we have

(k + 1)(k − 1)(k − 6)

12
Gf(k) =

∑
k1+k2=k

k1,k2≥4 even

(k1 − 1)(k2 − 1) Gf(k1)G
f(k2) .

Example

Gf(8) =
6

7
Gf(4)2, Gf(10) =

10

11
Gf(4)Gf(6), Gf(12) =

84

143
Gf(4)Gf(8) +

50

143
Gf(6)2 .
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2⃝ Formal MES - The subspace Ĝf

Ĝf = Q+ ⟨Gf(k1, . . . , kr) | r ≥ 1, k1, . . . , kr ≥ 1⟩Q ⊂ Gf .

By the definition of the quasi-shuffle product, it is easy to see that (Ĝf, ∗) is a subalgebra of (Gf, ∗).

Applying ∂ to the generators of Ĝf gives

∂
(
Gf(k1, . . . , kr)

)
=

r∑
j=1

kj G
f

(
k1, . . . , kj + 1, . . . , kr

0, . . . , 1, . . . , 0

)
.

Proposition (B.-Matthes-van Ittersum 2022+)

Ĝf is closed under ∂.

Conjecture

We have Ĝf = Gf.
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3⃝ Formal (quasi) modular forms - Definition

Definition

We define the algebra of formal quasimodular forms M̃f as the smallest subalgebra of Gf which satisfies the

following two conditions

Gf(2) ∈ M̃f.

M̃f is closed under ∂.

18 / 32



3⃝ Formal (quasi) modular forms - Basic facts

Proposition (B.-Matthes-van Ittersum 2022+)

We have M̃f = Q[Gf(2),Gf(4),Gf(6)] = Q[Gf(2), ∂Gf(2), ∂2Gf(2)] ∼= M̃.

The Ramanujan differential equations are satisfied:

∂Gf(2) = 5Gf(4)− 2Gf(2)2 ,

∂Gf(4) = 8Gf(6)− 14Gf(2)Gf(4) ,

∂Gf(6) =
120

7
Gf(4)2 − 12Gf(2)Gf(6) .

For m ≥ 1 we have Gf(2m) ∈ M̃f and

Gf(2m) = − B2m

2(2m)!
(−24Gf(2))m + terms with ∂Gf(2) and ∂2Gf(2) .

For m ≥ 2 we have Gf(2m) ∈ Q[Gf(4),Gf(6)].
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3⃝ Formal (quasi) modular forms - Cusp forms? Constant terms?

Clearly Q[Gf(4),Gf(6)] will be the space of formal modular forms.

But how can we define the space of formal cusp forms?

Question

What are the "constant terms" of formal multiple Eisenstein series?

Philosophy: The constant terms of formal multiple Eisenstein series should behave like (formal) multiple zeta

values (details later).

Idea: Divide out the relations which are satisfied by multiple zeta values.

20 / 32



3⃝ Formal (quasi) modular forms - The ideal N

We define the following two subsets of the alphabet A

A0 =

{[
k

0

]
| k ≥ 1

}
, A1 =

{[
1

d

]
| d ≥ 0

}
.

With this we define the following ideal in (Q⟨A⟩, ∗) generated by the set A∗\(A1)∗(A0)
∗

N =
(
A∗\(A1)∗(A0)

∗)
Q⟨A⟩ ,

The elements in A∗\(A1)∗(A0)
∗ are exactly those elements which are not of the form[

1, . . . , 1, k1, . . . , kr
d1, . . . , ds, 0, . . . , 0

]
.
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3⃝ Formal (quasi) modular forms - Formal multiple zeta values

Definition

The algebra of formal multiple zeta values is defined by

Z f = Gf
⧸N .

We denote the canonical projection by

π : Gf −→ Z f .

This map can be seen as the formal version of the "projection onto the constant term".

Proposition　(B.-Matthes-van Ittersum 2022+)

We have ∂Gf ⊂ ker(π).

Claim: The ideals N captures the additional relations satisfied by multiple zeta values, which are not satisfied by

multiple Eisenstein series. (More details later)
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3⃝ Formal (quasi) modular forms - formal modular forms & cusp forms

Definition

The algebra of formal modular forms Mf is defined as the subalgebra of Gf generated by all Gf(k) with

k ≥ 4 even. (Conjectural definition: Mf = ker d|M̃f )

We define the algebra of formal cusp forms by S f = kerπ|Mf .

The first example of a non-zero formal cusp form appears in weight 12 and we write

∆f = 2400 · 6! ·Gf(4)3 − 420 · 7! ·Gf(6)2 .

Proposition　(B.-Matthes-van Ittersum 2022+)

We have Mf = Q[Gf(4),Gf(6)] ∼= M and Mf
k = QGf(k)⊕ S f

k
∼= Mk .

We have ∆f ∈ S f
12 and ∂∆f = −24Gf(2)∆f. (c.f. Claire’s talk yesterday)

1

432
∆f = 48Gf(2)2∂Gf(2)2 + 32∂Gf(2)3 − 32Gf(2)3∂2 Gf(2)− 24Gf(2)∂Gf(2)∂2 Gf(2)− ∂2 Gf(2)2 .
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4⃝ MZV & DSH - Definition

Definition

For k1 ≥ 2, k2, . . . , kr ≥ 1 define the multiple zeta value (MZV)

ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 · · ·mkr

r

∈ R .

By r we denote its depth and k1 + · · ·+ kr will be called its weight.

Z : Q-algebra of MZVs

Zk : Q-vector space of MZVs of weight k.

MZVs can also be written as iterated integrals, e.g.

ζ(2, 3) =

∫ 1

0

dt1
t1

∫ t1

0

dt2
1− t2

∫ t2

0

dt3
t3

∫ t3

0

dt4
t4

∫ t4

0

dt5
1− t5

.
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4⃝ MZV & DSH - Stuffle & shuffle product

There are two different ways to express the product of MZV in terms of MZV.

Stuffle product (coming from the definition as iterated sums)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =
∑
m>0

1

mk1

∑
n>0

1

nk2

=
∑

m>n>0

1

mk1nk2
+

∑
n>m>0

1

mk1nk2
+

∑
m=n>0

1

mk1+k2

= ζ(k1, k2) + ζ(k2, k1) + ζ(k1 + k2) .

Shuffle product (coming from the expression as iterated integrals)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =
k1+k2−1∑

j=2

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
ζ(j, k1 + k2 − j) .
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4⃝ MZV & DSH - Double shuffle relations

These two product expressions give various Q-linear relations between MZV.

Example

ζ(2) · ζ(3) stuffle
= ζ(2, 3) + ζ(3, 2) + ζ(5)

shuffle
= ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .

=⇒ 2ζ(3, 2) + 6ζ(4, 1)
double shuffle

= ζ(5) .

But there are more relations between MZV. e.g.:∑
m>n>0

1

m2n
= ζ(2, 1) = ζ(3)=

∑
m>0

1

m3
.

These follow from regularizing the double shuffle relations

⇝extended double shuffle relations.
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4⃝ MZV & DSH - Relations conjectures

Conjecture

All relations among MZVs are consequences of the extended double shuffle relations.

Conjecture

The space Z is graded by weight, i.e.

Z =
⊕
k≥0

Zk .

There are various different families of relations which conjecturally give all relations among MZV.

There are several "modular phenomena", e.g. Broadhurst-Kreimer conjecture (see bonus slides)

Period polynomials (c.f. Isabella’s talk) can be related to relations among multiple zeta values in depth two.
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5⃝ Multiple Eisenstein series - Order on lattices

For M ≥ 1 set

ZM = {m ∈ Z | |m| < M} .

and for τ ∈ H define on Zτ + Z the order ≻ by

m1τ + n1 ≻ m2τ + n2 :⇔ (m1 > m2) or (m1 = m2 and n1 > n2) .

m

n
−6 6

5

All the points λ ∈ Z5i+ Z6 satisfying λ ≻ 0.
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5⃝ Multiple Eisenstein series - Multiple Eisenstein series

For M ≥ 1 set

ZM = {m ∈ Z | |m| < M} .
and for τ ∈ H define on Zτ + Z the order ≻ by

m1τ + n1 ≻ m2τ + n2 :⇔ (m1 > m2) or (m1 = m2 and n1 > n2) .

Definition

For integers k1, . . . , kr ≥ 1, and M,N ≥ 1 we define the truncated multiple Eisenstein series by

GM,N (k1, . . . , kr) =
∑

λ1≻···≻λr≻0
λi∈ZM τ+ZN

1

λk1
1 · · ·λkr

r

.

For k1, . . . , kr ≥ 2 the multiple Eisenstein series are defined by

G(k1, . . . , kr) = lim
M→∞

lim
N→∞

GM,N (k1, . . . , kr) .
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5⃝ Multiple Eisenstein series - The q-series g

Definition

For k1, . . . , kr ≥ 1 we define the q-series g(k1, . . . , kr) ∈ Q[[q]] by

g(k1, . . . , kr) =
∑

m1>···>mr>0
n1,...,nr>0

nk1−1
1

(k1 − 1)!
. . .

nkr−1
r

(kr − 1)!
qm1n1+···+mrnr .

In the case r = 1 these are the generating series of divisor-sums σk−1(n) =
∑

d|n n
k−1

g(k) =
∑

m,n>0

nk−1

(k − 1)!
qmn =

1

(k − 1)!

∑
n>0

σk−1(n)q
n ,

and they can be viewed as q-analogues of multiple zeta values, since for k1 ≥ 2, k2, . . . , kr ≥ 1 we have

lim
q→1

(1− q)k1+···+krg(k1, . . . , kr) = ζ(k1, . . . , kr) .

30 / 32



5⃝ Multiple Eisenstein series - Fourier expansion

ĝ(k1, . . . , kr) := (−2πi)k1+···+krg(k1, . . . , kr) ∈ Q[πi]JqK .

Theorem (Gangl-Kaneko-Zagier 2006 (r = 2), B. 2012 (r ≥ 2))

For k1, . . . , kr ≥ 2 there exist explicit αk1,...,kr
l1,...,lr,j

∈ Z, such that for q = e2πiτ we have

G(k1, . . . , kr) = ζ(k1, . . . , kr) +
∑

0<j<r
l1+···+lr=k1+···+kr

αk1,...,kr

l1,...,lr,j
ζ(l1, . . . , lj)ĝ(lj+1, . . . , lr) + ĝ(k1, . . . , kr) .

In particular, G(k1, . . . , kr) = ζ(k1, . . . , kr) +
∑

n>0 ak1,...,kr(n)q
n for some ak1,...,kr(n) ∈ Z[πi].

Examples
G(k) = ζ(k) + ĝ(k) ,

G(3, 2) = ζ(3, 2) + 3ζ(3)ĝ(2) + 2ζ(2)ĝ(3) + ĝ(3, 2) .
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5⃝ Multiple Eisenstein series - from MES to formal MES

G(k1, . . . , kr) = ζ(k1, . . . , kr) +
∑
n≥1

anq
n .

ζ(k1, . . . , kr) is defined for k1 ≥ 2, k2, . . . , kr ≥ 1.

G(k1, . . . , kr) is just defined for k1, . . . , kr ≥ 2.

Question

Is there a natural extenstion of G(k1, . . . , kr) for k1 ≥ 2, k2, . . . , kr ≥ 1?

Answer (B.-Tasaka): Yes. Stuffle & Shuffle regularized multiple Eisenstein series (See speedtalk of C. Turan)

In the construction of these regularized version, certain swap invariant q-series appear.

Studying their algebraic structure lead to the definition of formal MES.
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quasimodular forms

Formal multiple Eisenstein series

Formal quasimodular forms 

Combinatorial 
(bi)multiple Eisenstein series

?

See speedtalk of A. Burmester



6⃝ Bonus - Formal MZV

Proposition (B.-Matthes-van Ittersum 2022+)

The map π|Ĝf : Ĝf → Z f is surjective.

Definition

For k1, . . . , kr ≥ 1 we define the formal multiple zeta value ζ f(k1, . . . , kr) by

ζ f(k1, . . . , kr) = π(Gf(k1, . . . , kr)) .
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6⃝ Bonus - Formal MZV - Some relations

Corollary

(Double shuffle relations in depth two) For k1, k2 ≥ 1 we have

ζ f(k1)ζ
f(k2) = ζ f(k1, k2) + ζ f(k2, k1) + ζ f(k1 + k2)

=
∑

l1+l2=k1+k2

((
l1 − 1

k1 − 1

)
+

(
l1 − 1

k2 − 1

))
ζ f(l1, l2) + δk1+k2,2ζ

f(2) .

In particular we obtain the relation ζ f(3) = ζ f(2, 1) by taking k1 = 1, k2 = 2.

(Euler relation) For m ≥ 1 we have

ζ f(2m) = − B2m

2(2m)!

(
−24ζ f(2)

)m
.
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6⃝ Bonus - Formal MZV - Extended double shuffle relations

Theorem (B.-Matthes-van Ittersum 2022+)

The formal multiple zeta values satisfy exaclty the extended double shuffle relations.

Our formal multiple zeta values are isomorphic (after switching to the shuffle regularization) to the classical

definition of formal multiple zeta values (Racinet).

There is a 1:1 correspondence between objects satisfying the extended double shuffle relations and the

objects satisfying the relations in Z f.
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6⃝ Bonus - Broadhurst-Kreimer conjecture

grDr Zk : MZV of weight k and depth r modulo lower depths MZV.

Conjecture (Broadhurst-Kreimer, 1997)

The generating series of the dimensions of the weight- and depth-graded parts of multiple zeta values is given by∑
k,r≥0

dimQ
(
grDr Zk

)
XkY r =

1 + E(X)Y

1− O(X)Y + S(X)Y 2 − S(X)Y 4
,

where

E(X) =
X2

1−X2
, O(X) =

X3

1−X2
, S(X) =

X12

(1−X4)(1−X6)
=

∑
k≥0

dimSkX
k.

Observe that

1 + E(X)Y

1− O(X)Y + S(X)Y 2 − S(X)Y 4

= 1 + (E(X) + O(X))Y +
((

E(X) + O(X)
)
O(X)− S(X)

)
Y 2 + · · · .
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