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1⃝ MZV - Definition

Definition

For an index k = (k1, . . . , kr) ∈ Zr with k1 ≥ 2, k2, . . . , kr ≥ 1 define the multiple zeta value (MZV)

ζ(k) = ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 · · ·mkr

r

∈ R .

By r we denote its depth and k1 + · · ·+ kr will be called its weight.

Z : Q-algebra of MZVs

Zk : Q-vector space of MZVs of weight k.

In the case r = 1 these are just the classical Riemann zeta values

ζ(k) =
∑
n>0

1

nk
, ζ(2) =

π2

6
, ζ(3) /∈ Q , ζ(4) =

π4

90
, . . . .

MZVs were first studied by Euler (r = 2) and for general depth, they had their big comeback around 1990

due to their appearances in various areas of mathematics and physics.
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1⃝ MZV - Iterated integral representation

MZVs can also be written as iterated integrals:

Proposition

The MZV ζ(k1, ..., kr) of weight k = k1 + ...+ kr can be written as an iterated integral

ζ(k1, ..., kr) =

∫
1>t1>···>tk>0

ω1(t1) · · ·ωk(tk) ,

where

ωj(t) =

{
dt
1−t if j ∈ {k1, k1 + k2, . . . , k1 + · · ·+ kr}
dt
t else

.

Example

ζ(2, 3) =

∫ 1

0

dt1
t1

∫ t1

0

dt2
1− t2

∫ t2

0

dt3
t3

∫ t3

0

dt4
t4

∫ t4

0

dt5
1− t5

.

2 / 48



1⃝ MZV - Harmonic & Shuffle product

There are two different ways to express the product of MZVs in terms of MZVs.

Harmonic product (coming from the definition as iterated sums)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =
∑
m>0

1

mk1

∑
n>0

1

nk2

=
∑

m>n>0

1

mk1nk2
+

∑
n>m>0

1

mk1nk2
+

∑
m=n>0

1

mk1+k2

= ζ(k1, k2) + ζ(k2, k1) + ζ(k1 + k2) .

Shuffle product (coming from the expression as iterated integrals)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =
∫

... ·
∫

... =

k1+k2−1∑
j=2

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
ζ(j, k1 + k2 − j) .
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1⃝ MZV - Double shuffle relations

These two product expressions give various Q-linear relations between MZV.

Example

ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1)
shuffle
= ζ(2) · ζ(3) harmonic

= ζ(2, 3) + ζ(3, 2) + ζ(5) .

=⇒ 2ζ(3, 2) + 6ζ(4, 1)
double shuffle

= ζ(5) .

But there are more relations between MZV. e.g.:∑
m>n>0

1

m2n
= ζ(2, 1) = ζ(3)=

∑
n>0

1

n3
.

These follow from regularizing the double shuffle relations and they are called extended double shuffle

relations.
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1⃝ MZV - Conjectures

Conjectures

The extended double shuffle relations give all linear relations among MZV and

Z =
⊕
k≥0

Zk ,

i.e. there are no relations between MZV of different weight.

(Zagier) The dimension of the spaces Zk is given by∑
k≥0

dimQZk X
k =

1

1−X2 −X3
.

(Hoffman) The following set gives a basis of Z

{ζ(k1, . . . , kr) | r ≥ 0, k1, . . . , kr ∈ {2, 3}} .
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1⃝ MZV - Duality

There are other explicit families of relations among MZVs.

Definition

For any admissible index k = (k1 + 1, {1}d1−1, . . . , kr + 1, {1}dr−1) (ki, di ≥ 1)

its dual is defined as k∨ := (dr + 1, {1}kr−1, . . . , d1 + 1, {1}k1−1).

For example is (2, 1)∨ = (1 + 1, {1}2−1)∨ = (2 + 1, {1}1−1) = (3).

Theorem (Duality relation)

For every admissible index k we have ζ(k) = ζ(k∨).

Proofs:

Via iterated integral representation of MZVs and the change of variables ti 7→ 1− ti.
Seki-Yamamoto: Via connected sums.

Open problem

Show that the duality relation is a consequence of the extended double shuffle relations.
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1⃝ MZV - Broadhurst-Kreimer conjecture

grr Zk : MZVs of weight k and depth r modulo lower depths MZVs.

Conjecture (Broadhurst-Kreimer, 1997)

The generating series of the dimensions of the weight- and depth-graded parts of multiple zeta values is given by∑
k,r≥0

dimQ (grr Zk)X
kY r =

1 + E(X)Y

1− O(X)Y + S(X)Y 2 − S(X)Y 4
,

where

E(X) =
X2

1−X2
, O(X) =

X3

1−X2
, S(X) =

X12

(1−X4)(1−X6)
=
∑
k≥0

cusp forms︷ ︸︸ ︷
dimSk X

k.

Observe that

1 + E(X)Y

1− O(X)Y + S(X)Y 2 − S(X)Y 4

= 1 + (E(X) + O(X))Y +
((

E(X) + O(X)
)
O(X)− S(X)

)
Y 2 + · · · .
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1⃝ MZV - Modular forms → relations among double zeta values

Mk : Modular forms of weight k for SL2(Z).

Theorem (Gangl-Kaneko-Zagier, 2006)

There are at least dimMk (linearly independent) relations among ζ(k) and the double zeta values ζ(a, b) with

a, b odd and a+ b = k. (Conjecturally these are the only ones)

For each Eisenstein series Gk we have ζ(1, k − 1) + · · ·+ ζ(k − 3, 3) = 1
4ζ(k).

In weight 12 we have the relation ("from" the cusp form ∆(q) = q
∏

n≥1(1− qn)24)

28ζ(9, 3) + 150ζ(7, 5) + 168ζ(5, 7) =
5197

691
ζ(12) .

Explanation: Use double shuffle relations + period polynomials or q-analogues of MZVs.
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2⃝ q-analogues - Motivation

Rough picture

q-analogues of MZVs = q-series in QJqK "behaving" like MZVs (q → 1)

There are various motivations for studying q-analogues of MZV:

Bridge between MZVs and modular forms. (my motivation).

Appear in theoretical physics (N = 4 Super-Yang-Mills theory - Okazaki-sans talk ?).

Connection with enumerative geometry (Hilbert schemes of points on surfaces - Yanagida-sans talk?).

Can be used to renormalize/regularize multiple zeta values.

Just for fun.
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2⃝ q-analogues - Idea

"Roughly speaking, in mathematics, specifically in the areas of combinatorics and special functions, a
q-analogue of a theorem, identity or expression is a generalization involving a new parameter q that
returns the original theorem, identity or expression in the limit as q → 1. "

The easiest example is the q-analogue of a natural number m given by

[m]q =
1− qm

1− q
= 1 + q + · · ·+ qm−1 , lim

q→1
[m]q = m.

Naive approach for q-analogue of MZV: Replace 1
mk by 1

[m]kq
:

∑
m1>···>mr>0

1

mk1
1 · · ·mkr

r

⇝
∑

m1>···>mr>0

1

[m1]
k1
q · · · [mr]

kr
q

‘ = ’ ∞+O(q).

Problem: This sum does not make sense as an element in QJqK.
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2⃝ q-analogues - Create q-analogues of MZVs

General idea

Replace 1
mk by

P (qm)
[m]kq

with some good polynomial P .

In general, one can consider for polynomials P1 ∈ XQ[X], P2, . . . , Pr ∈ Q[X] the following sum∑
m1>···>mr>0

P1(q
m1) · · ·Pr(q

mr)

[m1]
k1
q · · · [mr]

kr
q

.

These satisfy (as long as the Pi are "nice" and satisfy Pi(1) = 1)

lim
q→1

∑
m1>···>mr>0

P1(q
m1) · · ·Pr(q

mr)

[m1]
k1
q · · · [mr]

kr
q

= ζ(k1, . . . , kr)

and therefore they are q-analogues of multiple zeta values.
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2⃝ q-analogues - Modified q-analogues

For the connection to modular forms it is more natural to consider modified versions of q-analogues.

Definition

A modified q-analogue of weight k of c ∈ C is a q-series f(q) ∈ CJqK, such that

lim
q→1

(1− q)kf(q) = c .

Proposition

Any modular form f(q) =
∑

n≥0 anq
n ∈ Mk is a modified q-analogue of (2πi)ka0 (of weight k).

Modified general idea

Replace 1
mk by

P (qm)
(1−qm)k

with some good polynomial P . Notice that

(1− q)k
P (qm)

(1− qm)k
=

P (qm)

[m]kq
.
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2⃝ q-analogues - General modified q-MZVs

Definition (B.-Kühn (2017))

For k1, . . . , kr ≥ 1, polynomials P1(X) ∈ XQ[X] and P2(X), . . . , Pr(X) ∈ Q[X] we define

ζq(k1, . . . , kr;P1, . . . , Pr) =
∑

m1>···>mr>0

P1(q
m1) · · ·Pr(q

mr)

(1− qm1)k1 · · · (1− qmr)kr
.

We only consider the case where deg(Pj) ≤ kj and consider the following Q-vector space

Zq := Q+
〈
ζq(k1, . . . , kr;P1, . . . , Pr)

∣∣ r ≥ 1, k1, . . . , kr ≥ 1, deg(Pj) ≤ kj

〉
Q
.

These are (modified) q-analogues of multiple zeta values:

For k1 ≥ 2, k2, . . . , kr ≥ 1 we have

lim
q→1

(1− q)k1+···+krζq(k1, . . . , kr;P1, . . . , Pr) = P1(1) · · ·Pr(1) ζ(k1, . . . , kr) .
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2⃝ q-analogues - Analogue of the harmonic product

Similarly as for MZVs we have:

Harmonic product (coming from the definition as iterated sums)

Example in depth two (k1, k2 ≥ 2)

ζq(k1;P1)ζq(k2;P2) =
∑
m>0

P1(q
m)

(1− qm)k1

∑
n>0

P2(q
n)

(1− qn)k2

=

( ∑
m>n>0

+
∑

n>m>0

+
∑

m=n>0

)
P1(q

m)

(1− qm)k1
P2(q

n)

(1− qn)k2

= ζq(k1, k2;P1, P2) + ζq(k2, k1;P2, P1) + ζq(k1 + k2;P1 · P2) .

In particular, Zq is a Q-algebra by using the above argument in arbitrary depth.
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2⃝ q-analogues - Questions

Recalling the results on MZV, one should have the following questions:

Questions

What about the shuffle product?

Iterated integrals?

What are the relations?

Dimension?

Good choice of polynomials Pi?

Why the condition deg(Pj) ≤ kj?

In the following, we give an overview of several different models (choices of Pi) for q-analogues of MZVs and

address some of the above questions.
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2⃝ q-analogues - Bradley-Zhao(-Takeyama)

One of the most classical q-analogue models was introduced by Bradley and Zhao.

Definition (Bradley (2004), Zhao (2003))

For k1 ≥ 2,k2, . . . , kr ≥ 1 define

ζBZ
q (k) = ζBZ

q (k1, . . . , kr) = ζq(k1, . . . , kr;X
k1−1, . . . , Xkr−1)

=
∑

m1>···>mr>0

qm1(k1−1) · · · qmr(kr−1)

(1− qm1)k1 · · · (1− qmr)kr
.

Harmonic product:

ζBZ
q (k1)ζ

BZ
q (k2) = ζBZ

q (k1, k2) + ζBZ
q (k2, k1) + ζBZ

q (k1 + k2) + ζBZ
q (k1 + k2 − 1).

Results for the Bradley-Zhao model

(Bradley 2004/Seki-Yamamoto 2019) The duality relation holds: ζBZ
q (k) = ζBZ

q (k∨).

(Takeyama 2013): Extended definition and description of an analogue of the shuffle product & some relations.
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2⃝ q-analogues - Okounkov

In connection with Hilbert schemes of surfaces Okounkov considers the following (See Yanagida-sans talk).

Definition (Okounkov (2014))

For k1, . . . , kr ≥ 2 define

ζOq (k1, . . . , kr) = ζq(k1, . . . , kr;Ok1(X), . . . , Okr(X)),

where

Ok(X) =

{
X

k
2 k = 2, 4, 6, . . .

X
k−1
2 (1 +X) k = 3, 5, 7, . . . .

Results for the Okounkov model

(Okounkov 2014): Dimension conjecture for the space spanned by ζO (proper subspace of Zq) and

conjectural connections to problems in enumerative geometry.
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2⃝ q-analogues - Schlesinger-Zudilin

Definition (Schlesinger (2001), Zudilin (2003), Singer (2015))

For k1 ≥ 1,k2, . . . , kr ≥ 0 define

ζSZq (k) = ζSZq (k1, . . . , kr) = ζq(k1, . . . , kr;X
k1 , . . . , Xkr)

=
∑

m1>···>mr>0

qm1k1 · · · qmrkr

(1− qm1)k1 · · · (1− qmr)kr
.

Harmonic product (same as for MZVs):

ζSZq (k1)ζ
SZ
q (k2) = ζSZq (k1, k2) + ζSZq (k2, k1) + ζSZq (k1 + k2).

Results for the Schlesinger-Zudilin model

(Zhao 2014, Ebrahimi-Fard - Manchon - Singer 2016): SZ-Duality and description of the shuffle product.

(B.-Kühn 2017) The ζSZq span the space Zq .
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2⃝ q-analogues - SZ-Duality

Definition

We call an index k = (k1, . . . , kr) ∈ Zr with k1 ≥ 1, k2, . . . , kr ≥ 0 SZ-admissible.

Its weight is given by k1 + · · ·+ kr +#{j | kj = 0}.

Write k = (l1, {0}d1 , . . . , ls, {0}ds) (li ≥ 1, dj ≥ 0) and define its SZ-dual by

k† := (ds + 1, {0}ls−1, . . . , d1 + 1, {0}l1−1).

Theorem (Zhao (2014), Singer (2014))

For every SZ-admissible index k we have: ζSZ
q (k) = ζSZ

q (k†).

Example ζSZ
q (2) = ζSZ

q (1, 0).

We give a combinatorial explanation of the SZ-duality later using partitions.

19 / 48



2⃝ q-analogues - SZ-Duality

"Proposition"

SZ-duality + harmonic product + SZ-duality = shuffle product

Example ζSZ
q (2)ζSZ

q (3) = ζSZ
q (1, 0)ζSZ

q (1, 0, 0)

= ζSZ
q (1, 0, 0, 1, 0) + 3ζSZ

q (1, 0, 1, 0, 0) + 6ζSZ
q (1, 1, 0, 0, 0)

+ 7ζSZ
q (1, 1, 0, 0) + 2ζSZ

q (2, 0, 0) + 3ζSZ
q (2, 0, 0, 0)

+ ζSZ
q (1, 1, 0) + 2ζSZ

q (1, 0, 1, 0)

= ζSZ
q (2, 3) + 3ζSZ

q (3, 2) + 6ζSZ
q (4, 1) + (Terms of weight < 5).

After multiplication with (1− q)5 and taking the limit q → 1, we get

ζ(2)ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1).
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2⃝ q-analogues - q-analogues of MZV

Theorem (B.-Kühn, 2017)

The space Zq is a Q-algebra.

It contains the space of (quasi-)modular forms with rational coefficients.

It is closed under the operator q d
dq .

Similar to the double shuffle relations for MZVs we can prove relations in Zq , e.g.

−ζSZ
q (6) + 6ζSZ

q (3, 3)− 3ζSZ
q (4, 2) = ζSZ

q (5)− 6ζSZ
q (2, 3)− 2ζSZ

q (3, 2)

− 5ζSZ
q (2, 2)− ζSZ

q (3, 1)− ζSZ
q (2, 1).

These relations are between q-analouges of mixed weight.

Question

Are there weight graded q-analogues?

Answer: Yes! (Combinatorial) Multiple Eisenstein series.
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3⃝ Multiple Eisenstein series & the q-series g - Order on lattices

For M ≥ 1 set

ZM = {m ∈ Z | |m| < M} .

and for τ ∈ H define on Zτ + Z the order ≻ by

m1τ + n1 ≻ m2τ + n2 :⇔ (m1 > m2) or (m1 = m2 and n1 > n2) .

m

n
−6 6

5

All the points λ ∈ Z5i+ Z6 satisfying λ ≻ 0.
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3⃝ Multiple Eisenstein series & the q-series g - Multiple Eisenstein series

For M ≥ 1 set

ZM = {m ∈ Z | |m| < M} .
and for τ ∈ H define on Zτ + Z the order ≻ by

m1τ + n1 ≻ m2τ + n2 :⇔ (m1 > m2) or (m1 = m2 and n1 > n2) .

Definition

For integers k1, . . . , kr ≥ 1, and M,N ≥ 1 we define the truncated multiple Eisenstein series by

GM,N (k1, . . . , kr) =
∑

λ1≻···≻λr≻0
λi∈ZM τ+ZN

1

λk1
1 · · ·λkr

r

.

For k1, . . . , kr ≥ 2 the multiple Eisenstein series are defined by

G(k1, . . . , kr) = lim
M→∞

lim
N→∞

GM,N (k1, . . . , kr) .
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3⃝ Multiple Eisenstein series & the q-series g - The q-series g

Definition

For k1, . . . , kr ≥ 1 we define the q-series g(k1, . . . , kr) ∈ Q[[q]] by

g(k1, . . . , kr) =
∑

m1>···>mr>0
n1,...,nr>0

nk1−1
1

(k1 − 1)!
. . .

nkr−1
r

(kr − 1)!
qm1n1+···+mrnr .

In the case r = 1 these are the generating series of divisor-sums σk−1(n) =
∑

d|n n
k−1

g(k) =
∑

m,n>0

nk−1

(k − 1)!
qmn =

1

(k − 1)!

∑
n>0

σk−1(n)q
n ,

and they can be viewed as q-analogues of multiple zeta values, since for k1 ≥ 2, k2, . . . , kr ≥ 1 we have

lim
q→1

(1− q)k1+···+krg(k1, . . . , kr) = ζ(k1, . . . , kr) .
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3⃝ Multiple Eisenstein series & the q-series g - Fourier expansion

ĝ(k1, . . . , kr) := (−2πi)k1+···+krg(k1, . . . , kr) ∈ Q[πi]JqK .

Theorem (Gangl-Kaneko-Zagier 2006 (r = 2), B. 2012 (r ≥ 2))

For k1, . . . , kr ≥ 2 there exist explicit αk1,...,kr
l1,...,lr,j

∈ Z, such that for q = e2πiτ we have

G(k1, . . . , kr) = ζ(k1, . . . , kr) +
∑

0<j<r
l1+···+lr=k1+···+kr

αk1,...,kr

l1,...,lr,j
ζ(l1, . . . , lj)ĝ(lj+1, . . . , lr) + ĝ(k1, . . . , kr) .

In particular, G(k1, . . . , kr) = ζ(k1, . . . , kr) +
∑

n>0 ak1,...,kr(n)q
n for some ak1,...,kr(n) ∈ Z[πi].

Examples
G(k) = ζ(k) + ĝ(k) ,

G(3, 2) = ζ(3, 2) + 3ζ(3)ĝ(2) + 2ζ(2)ĝ(3) + ĝ(3, 2) .
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3⃝ Multiple Eisenstein series & the q-series g - MacMahon’s generalized sums-of-divisors

The coefficients of g(k1, . . . , kr) can be seen as "multiple divisor-sums" (B.-Kühn 2013).

They generalize the MacMahon’s generalized sums-of-divisors (r ≥ 1):

Ar(q) =
∑

m1>···>mr>0

qm1+···+mr

(1− qm1)2 · · · (1− qmr)2
= g(2, . . . , 2︸ ︷︷ ︸

r

).

One consequence of the formula for the Fourier expansion of multiple Eisenstein series is the following.

Theorem (B. 2024+)

We have

1 +
∑
r≥1

Ar(q)X
2r =

2

X
arcsin

(
X

2

)
exp

∑
j≥1

(−1)j−1

j
G2j(q)

(
2 arcsin

(
X

2

))2j
 ,

where Gk(q) = −Bk
2k! +

1
(k−1)!

∑
m,n≥1 n

k−1qmn.

In particular, Ar(q) are quasimodular forms (Rose-Andrews 2013).

One can show in general that g(2k, . . . , 2k) for k ≥ 1 are quasimodular forms (of mixed weight).
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3⃝ Multiple Eisenstein series & the q-series g - Part 2: Harmonic product

The g can be written in terms of ζq as

g(k1, . . . , kr) = ζq(k1, . . . , kr;Ek1 , . . . , Ekr),

where Ek(X) are the Eulerian polynomials defined by
Ek(X)
(1−X)k

= 1
(k−1)!

∑
d≥1 d

k−1Xd.

Proposition

For k1, k2 ≥ 1 we have

g(k1)g(k2) = g(k1, k2) + g(k2, k1) + g(k1 + k2) +

k1+k2−1∑
j=1

λj
k1,k2

g(j)

for some explicit λj
k1,k2

∈ Q.

Example g(2)g(3) = g(2, 3) + g(3, 2) + g(5)− 1
12g(3).
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3⃝ Multiple Eisenstein series & the q-series g - Derivatives

Now consider the derivative q d
dq

q
d

dq
gk(q) = q

d

dq

∑
m>0
n>0

nk−1

(k − 1)!
qmn =

∑
m>0
n>0

mnk

(k − 1)!
qmn .

We see that after taking the derivative we also have a m appearing in the numerator. Moreover if we would take

the d-th derivative we would get(
q
d

dq

)d

gk(q) =
∑
m>0
n>0

mdnk+d−1

(k − 1)!
qmn .

This leads us to define g in a more general way.
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3⃝ Multiple Eisenstein series & the q-series g - Double indexed g

Definition

For k1, . . . kr ≥ 1, d1, . . . , dr ≥ 0 define the q-series

g

(
k1, . . . , kr
d1, . . . , dr

)
=

∑
m1>···>mr>0
n1,...,nr>0

md1
1 nk1−1

1

(k1 − 1)!
. . .

mdr
r nkr−1

r

(kr − 1)!
qm1n1+···+mrnr .

We say that this has weight k1 + · · ·+ kr + d1 + · · ·+ dr .

With the same idea as before we get

q
d

dq
g

(
k1, . . . , kr
d1, . . . , dr

)
=

r∑
j=1

kjg

(
k1, . . . .kj + 1, . . . , kr
d1, . . . , dj + 1, . . . , dr

)
.

What about their product?
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3⃝ Multiple Eisenstein series & the q-series g - Product

The product for the harmonic product generalizes easily by just adding the dj :

Proposition

For k1, k2 ≥ 1, d1, d2 ≥ 0 we have

g

(
k1
d1

)
g

(
k2
d2

)
= g

(
k1, k2
d1, d2

)
+ g

(
k2, k1
d2, d1

)
+ g

(
k1 + k2
d1 + d2

)
+

k1+k2−1∑
j=1

λj
k1,k2

g

(
j

d1 + d2

)
,

where λj
k1,k2

∈ Q is the same as before.

The harmonic product looks more complicated (compared to the SZ-model), but we can relate the double indexed

g nicely to partitions.
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Conjugation of partitions

7      =        3 + 2 + 1 + 1        =         4 + 2 + 1

conjugation

Young diagram

Stanley’s coordinates
parts

multiplicity



3⃝ Multiple Eisenstein series & the q-series g - Connection with partitions

g

(
k1, . . . , kr
d1, . . . , dr

)
=

∑
m1>···>mr>0
n1,...,nr>0

md1
1 nk1−1

1

(k1 − 1)!
. . .

mdr
r nkr−1

r

(kr − 1)!︸ ︷︷ ︸
f(λ)

qm1n1+···+mrnr =
∑
N>0

 ∑
λ∈Partr(N)

f(λ)

 qN .

Partr(N): Partitions of N made out of r different parts.

Any element λ ∈ Partr(N) can be represented by a Young diagram

λ =

m1

m2

mr−1

mr

n1

n2

nr−1

nr

where N = m1n1 + · · ·+mrnr and m1 > · · · > mr > 0, n1, . . . , nr > 0.
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3⃝ Multiple Eisenstein series & the q-series g - Conjugation

On Partr(N) we have an involution given by the conjugation λ 7→ λ′ of Young diagrams.

λ =

m1

m2

mr−1

mr

n1

n2

nr−1

nr

共役
= λ′

n1 + · · ·+ nr

n1 + · · · + nr−1

n1 + n2

n1

mr

mr−1 −mr

m2 −m3

m1 −m2

Since we sum over all elements in Partr(N) we obtain linear relations among g

g

(
k1, . . . , kr
d1, . . . , dr

)
=
∑
N>0

 ∑
λ∈Partr(N)

f(λ)

 qN =
∑
N>0

 ∑
λ∈Partr(N)

f(λ′)

 qN =
∑

∗ g
(
∗, . . . , ∗
∗, . . . , ∗

)
.
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3⃝ Multiple Eisenstein series & the q-series g - Conjugation

Example In depth one the conjugation is just the interchange m ↔ n and we have for any k ≥ 1, d ≥ 0

g

(
k

d

)
=
∑
m>0
n>0

mdnk−1

(k − 1)!
qmn =

d!

(k − 1)!

∑
m>0
n>0

mdnk−1

d!
qmn =

d!

(k − 1)!
g

(
d+ 1

k − 1

)
.

In depth two the conjugation is given by the variable change m1 → n1 + n2 and m2 → n1

g

(
1, 1

1, 2

)
=

∑
m1>m2>0
n1,n2>0

m1m
2
2 q

m1n1+m2n2=
∑

m1>m2>0
n1,n2>0

(n1 + n2)n
2
1 q

m1n1+m2n2

= 6
∑

m1>m2>0
n1,n2>0

n3
1

6
qm1n1+m2n2 + 2

∑
m1>m2>0
n1,n2>0

n2
1n2

2
qm1n1+m2n2

= 6g

(
4, 1

0, 0

)
+ 2g

(
3, 2

0, 0

)
= 6g(4, 1) + 2g(3, 2) .
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3⃝ Multiple Eisenstein series & the q-series g - Shuffle product analogue

Combining the harmonic product and the conjugation gives another way to express the product.

g(2)g(3) = g

(
2

0

)
g

(
3

0

)
=

1

2
g

(
1

1

)
g

(
1

2

)
=
1

2

(
g

(
1, 1

1, 2

)
+ g

(
1, 1

2, 1

)
+ g

(
2

3

)
− g

(
1

3

))
= g

(
2, 3

0, 0

)
+ 3g

(
3, 2

0, 0

)
+ 6g

(
4, 1

0, 0

)
+ 3g

(
4

1

)
− 3g

(
4

0

)
.

Using q d
dqg
(
3
0

)
= 3g

(
4
1

)
we obtain

g(2)g(3) = g(2, 3) + 3g(3, 2) + 6g(4, 1)− 3g(4) + q
d

dq
g(3) ,

which looks (again as in the SZ-duality example) similar to ζ(2)ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1).
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3⃝ Multiple Eisenstein series & the q-series g - Explicit shuffle product

Corollary

For k1, k2 ≥ 1 and k = k1 + k2 we have

g(k1)g(k2) =

k−1∑
j=1

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
g(j, k − j)

+

(
k − 2

k1 − 1

)(
q
d

dq

g(k − 2)

k − 2
− g(k − 1)

)
+ δk1,1δk2,1g(2) ,

where δi,j =

{
1 , i = j

0 , i ̸= j
denotes the Kronecker delta.

Recall the shuffle product for MZVs in lowest depths (k1, k2 ≥ 2):

ζ(k1) · ζ(k2) =
∫

... ·
∫

... =

k1+k2−1∑
j=2

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
ζ(j, k1 + k2 − j) .
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3⃝ Multiple Eisenstein series & the q-series g - Conjugation = SZ-duality

Proposition (B.-Kühn, 2017)

The space Zq is spanned by the double indexed g.

In particular, we can apply the relation obtained from the conjugation of partitions to any element in Zq .

Proposition (Brindle, 2021)

Applying the conjugation to ζSZ
q (k) gives exactly ζSZ

q (k†).

Conjecture (B., 2014)

The space Zq is spanned by the single indexed g.

All relations in Zq are obtained from the conjugation and the harmonic product.
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3⃝ Multiple Eisenstein series & the q-series g - Combinatorial MES

Theorem (B.-Burmester, 2023)

For k1, . . . , kr ≥ 1 there exist G(k1, . . . , kr) ∈ QJqK such that

In depth r = 1 they are the classical Eisenstein series G(k) = −Bk
2k! +

1
(k−1)!

∑
m,n≥1 n

k−1qmn.

They satisfy the harmonic product formula.

For k1 ≥ 2 we have limq→1(1− q)k1+···+krG(k1, . . . , kr) = ζ(k1, . . . , kr).

They (conjecturally) span the space Zq .

They are (conjecturally) graded by weight.

(More generally, we construct G
(
k1,...,kr
d1,...,dr

)
by using the double indexed g)

Example

G(2, 1, 1) =
1

1440
+

1

6
g(2)− g(2, 1) + g(2, 1, 1),

∆
·
=28G(9, 3) + 150G(7, 5) + 168G(5, 7)− 5197

691
G(12) .
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2⃝ q-analogues - Questions

Let us answer the questions we had:

Questions

What about the shuffle product? shuffle = conjugation + harmonic + conjugation

Iterated integrals? (Medina - Ebrahimi-Fard - Manchon / Takeyama): Iterated Jackson integrals, Rota-Baxter

Operators, q-Multiple Polylogarithm

What are the relations? Conjecturally conjugation + harmonic product

Dimension? (B.-Kühn / Okounkov) There exist analogues of the Zagier conjecture and the

Broadhurst-Kreimer conjecture for Zq

Good choice of polynomials Pi? Depends: for conjugation: ζSZ
q , for q d

dq : g, for classical duality: ζBZ
q ,

"correct objects": Combinatorial MES

Why the condition deg(Pj) ≤ kj? This ensures that we can write elements as "polynomials in partitions".
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4⃝ Functions on partitions - Overview

partition of n: λ = (λ1, . . . , λl) with λ1 ≥ · · · ≥ λl ≥ 1 and n = |λ| := λ1 + · · ·+ λl.

P: the set of all partitions.

QP: Set of all functions P → Q.

To a function f : P → Q, we associate

a q-series ⟨f⟩q ∈ QJqK
a degree deg(f) ∈ R
a degree limit Zdeg(f) ∈ R

in such a way that asymptotically for real q

(1− q)deg(f)⟨f⟩q = Zdeg(f) +O(1− q).

Further, we introduce a subspace P ⊂ QP such that for all f ∈ P we have ⟨f⟩q ∈ Zq .

H. Bachmann, J.-W. van Ittersum

Partitions, Multiple Zeta Values and the q-bracket

Selecta Math. 30:3 (2024).
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4⃝ Functions on partitions -q-bracket

Definition (Bloch-Okounkov, 2000)

For f : P → Q define the q-bracket by

⟨f⟩q :=

∑
λ∈P f(λ) q

|λ|∑
λ∈P q

|λ| ∈ QJqK.

In case f(λ) has at most polynomial growth in |λ|, its q-bracket is holomorphic for |q| < 1.

Notice that the denominator is given by
∑

λ∈P q
|λ| =

∏
n≥1

1
1−qn = (q; q)−1

∞ .

Example Consider the function f(λ) = |λ|. Then we have

⟨f⟩q =
∑

λ∈P |λ| q|λ|∑
λ∈P q

|λ| = q
d

dq
log
(∏
n≥1

1

1− qn
)
=
∑

m,n≥1

mqmn =
∑
n≥1

σ1(n)q
n = g(2).
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4⃝ Functions on partitions - Shifted symmetric functions

Definition

The algebra of shifted symmetric functions is Λ∗ = Q[Q2, Q3, . . .], where Qk : P → Q is given by

Qk(λ) := βk +
1

(k − 1)!

∞∑
i=1

(
(λi − i+ 1

2)
k−1 − (−i+ 1

2)
k−1
)
,

where λ = (λ1, λ2, . . .) and βk =
(

1
2k−1 − 1)Bk

k! with Bk the k-th Bernoulli number.

Theorem (Bloch-Okounkov (2000))

For any f ∈ Λ∗ the q-series ⟨f⟩q is a quasimodular form.
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4⃝ Functions on partitions - Polynomial functions

rm(λ): the number of times m occurs as a part in the partition λ.

Definition (B.-van-Ittersum, 2024)

The space of polynomial functions on partitions P is the image of

Ψ :
⊕
n≥0

Q[x1, . . . , xn, y1, . . . , yn] → QP,

where Ψ maps the polynomial p(x1, . . . , xn, y1, . . . , yn) to

λ 7→
∑

m1>...>mn>0

rm1 (λ)∑
r1=1

· · ·
rmn (λ)∑
rn=1

p(m1, . . . ,mn, r1, . . . , rn).

Example The function f = Ψ(x1) is given by

f(λ) =
∑
m>0

rm(λ)∑
r=1

m =
∑
m>0

rm(λ)m = |λ|.
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4⃝ Functions on partitions - Polynomial functions

rm(λ): the number of times m occurs as a part in the partition λ.

Definition (B.-van-Ittersum, 2024)

The space of polynomial functions on partitions P is the image of

Ψ :
⊕
n≥0

Q[x1, . . . , xn, y1, . . . , yn] → QP,

where Ψ maps the polynomial p(x1, . . . , xn, y1, . . . , yn) to

λ 7→
∑

m1>...>mn>0

rm1 (λ)∑
r1=1

· · ·
rmn (λ)∑
rn=1

p(m1, . . . ,mn, r1, . . . , rn).

Theorem (B.-van-Ittersum (2024))

We have Λ∗ ⊊ M := {f ∈ P | ⟨f⟩q is quasi-modular} ⊊ P.

For any f ∈ P we have ⟨f⟩q ∈ Zq . (and any element in Zq arises in this way)
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4⃝ Functions on partitions -g as the q-bracket of a polynomial function

Definition

For F = {fk}∞k=1 with fk ∈ Q[x] and ki ≥ 1, di ≥ 0 define the following element in P

PF

(
k1, . . . , kr
d1, . . . , dr

)
: P −→ Q

λ 7−→
∑

m1>···>mr>0

r∏
j=1

m
dj
j fkj (rmj (λ)).

Example For s = {fk}∞k=1, with fk(x)− fk(x− 1) = 1
(k−1)!x

k−1 and fk(0) = 0 we get

〈
Ps

(
k1, . . . , kr
d1, . . . , dr

)〉
q
=

∑
m1>...>mr>0
n1,...,nr>0

r∏
j=1

m
dj
j

n
kj−1
j

(kj − 1)!
qmjnj = g

(
k1, . . . , kr
d1, . . . , dr

)
.
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4⃝ Functions on partitions - degree & degree limit

Definition

For f ∈ QP we define the

degree by

deg(f) = inf
a∈R

{
lim
q→1

(1− q)a⟨f⟩q converges
}
.

degree limit Zdeg(f) ∈ R ∪ {±∞} by

lim
q→1

(1− q)deg(f)⟨f⟩q

whenever it exists

Example Consider the function f(λ) = |λ|. Then we have deg(f) = 2 and

Zdeg(f) = lim
q→1

(1− q)2⟨f⟩q = lim
q→1

(1− q)2g(2) = ζ(2).
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4⃝ Functions on partitions - degree of polynomial functions

Theorem (B.-van-Ittersum, 2024)

Given r ≥ 1 and di, li ∈ Z≥0 for i = 1, . . . , r, let f = Ψ(
∏r

i=1 x
di
i ylii ) ∈ P. Then,

deg(f) = max
j∈{0,...,r}

∑
i≤j

(di + 1) +
∑
i>j

(li + 1)

 .

Moreover, if the maximum is attained for a unique value of j, then Zdeg(f) ∈ Z≤deg(f).

Corollary

For k1 ≥ 2, k2, . . . , kr ≥ 1 and d1, . . . , ds−1 ≥ 0, ds ≥ 1 we have

lim
q→1

(1− q)k1+···+kr+d1+···+dsg

(
1, . . . , 1, k1, . . . , kr
d1, . . . , ds, 0, . . . , 0

)
= ξ(d1, . . . , ds)ζ(k1, . . . , kr),

where we call ξ(d1, . . . , ds) conjugated multiple zeta values.
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4⃝ Functions on partitions - Conjugated MZV

Definition (B.-van-Ittersum, 2024)

For d1, . . . , dr−1 ≥ 0, dr ≥ 1, define the conjugated multiple zeta value by

ξ(d1, . . . , dr) :=
∑

0<m1<...<mr

1

m1 · · ·mr
Ω

[ r∏
i=1

( 1

mi
+ . . .+

1

mr

)di]
,

where Ω : Q[m−1
1 , . . . ,m−1

r ] → Q[m−1
1 , . . . ,m−1

r ] is the linear mapping

Ω
[ 1

ml1
1 · · ·mlr

r

]
:=

l1! · · · lr!
ml1

1 · · ·mlr
r

.

These satisfy the index-shuffle product formula, e.g.,

ξ(d1)ξ(d2) = ξ(d1, d2) + ξ(d2, d1)

for d1, d2 ≥ 1.
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4⃝ Functions on partitions -u-bracket

Definition (van-Ittersum, 2021)

The vector space isomorphism ⟨ ⟩u⃗ : QP → QJu1, u2, . . .K is given by

⟨f⟩u⃗ :=

∑
λ∈P f(λ)uλ∑

λ∈P uλ
(uλ = uλ1 uλ2 · · · , u0 = 1).

For f ∈ QP we call ⟨f⟩u⃗ the u⃗-bracket of f .

Note that the u⃗-bracket reduces to the q-bracket by specializing ui = qi for all integers i.
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4⃝ Functions on partitions - Double shuffle relations for functions on partitions

Definition

Given F,G ∈ QJu1, u2, . . .K, we define

the harmonic product as the multiplication F ⊛G = FG.

the conjugation of F =
∑

λ∈P aλuλ by ι(F ) =
∑

λ∈P aλuλ′ .

the shuffle product as the multiplication F � G = ι(ι(F )⊛ ι(G)).

the derivative of F =
∑

λ∈P aλuλ by DF =
∑

λ∈P aλ|λ|uλ .

We extend these definitions to QP by the isomorphism given by the u⃗-bracket.

Proposition (Double shuffle relations for general functions on partitions)

For all f, g ∈ QP we have

⟨ι(f)⟩q = ⟨f⟩q , ⟨f ⊛ g⟩q = ⟨f⟩q ⟨g⟩q = ⟨f � g⟩q and q
∂

∂q
⟨f⟩q = ⟨Df⟩q .

Question: Applications to other (modular) objects than q-analogues?
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