q－analogues of multiple zeta values

and polynomial functions on partitions

Henrik Bachmann（Nagoya University）
based on collaborations with：B．Brindle，A．Burmester，J．－W．van Ittersum，U．Kühn．

$$
q \text { 級数とその周辺 }
$$

12th \＆14th March 2024

The goal of my two talks will be to explain the following picture

(1) MZV - Definition

Definition

For an index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Z}^{r}$ with $k_{1} \geq 2, k_{2}, \ldots, k_{r} \geq 1$ define the multiple zeta value (MZV)

$$
\zeta(\mathbf{k})=\zeta\left(k_{1}, \ldots, k_{r}\right)=\sum_{m_{1}>\cdots>m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \in \mathbb{R}
$$

By r we denote its depth and $k_{1}+\cdots+k_{r}$ will be called its weight.

- $\mathcal{Z}: \mathbb{Q}$-algebra of $M Z V s$
- $\mathcal{Z}_{k}: \mathbb{Q}$-vector space of MZVs of weight k.
- In the case $r=1$ these are just the classical Riemann zeta values

$$
\zeta(k)=\sum_{n>0} \frac{1}{n^{k}}, \quad \zeta(2)=\frac{\pi^{2}}{6}, \quad \zeta(3) \notin \mathbb{Q}, \quad \zeta(4)=\frac{\pi^{4}}{90}
$$

- MZVs were first studied by Euler $(r=2)$ and for general depth, they had their big comeback around 1990 due to their appearances in various areas of mathematics and physics.

(1) MZV - Iterated integral representation

MZVs can also be written as iterated integrals:

Proposition

The MZV $\zeta\left(k_{1}, \ldots, k_{r}\right)$ of weight $k=k_{1}+\ldots+k_{r}$ can be written as an iterated integral

$$
\zeta\left(k_{1}, \ldots, k_{r}\right)=\int_{1>t_{1}>\cdots>t_{k}>0} \omega_{1}\left(t_{1}\right) \cdots \omega_{k}\left(t_{k}\right)
$$

where

$$
\omega_{j}(t)= \begin{cases}\frac{d t}{1-t} & \text { if } j \in\left\{k_{1}, k_{1}+k_{2}, \ldots, k_{1}+\cdots+k_{r}\right\} \\ \frac{d t}{t} & \text { else }\end{cases}
$$

Example

$$
\zeta(2,3)=\int_{0}^{1} \frac{d t_{1}}{t_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{1-t_{2}} \int_{0}^{t_{2}} \frac{d t_{3}}{t_{3}} \int_{0}^{t_{3}} \frac{d t_{4}}{t_{4}} \int_{0}^{t_{4}} \frac{d t_{5}}{1-t_{5}}
$$

(1) MZV - Harmonic \& Shuffile product

There are two different ways to express the product of MZVs in terms of MZVs.
Harmonic product (coming from the definition as iterated sums)
Example in depth two ($k_{1}, k_{2} \geq 2$)

$$
\begin{aligned}
\zeta\left(k_{1}\right) \cdot \zeta\left(k_{2}\right) & =\sum_{m>0} \frac{1}{m^{k_{1}}} \sum_{n>0} \frac{1}{n^{k_{2}}} \\
& =\sum_{m>n>0} \frac{1}{m^{k_{1}} n^{k_{2}}}+\sum_{n>m>0} \frac{1}{m^{k_{1}} n^{k_{2}}}+\sum_{m=n>0} \frac{1}{m^{k_{1}+k_{2}}} \\
& =\zeta\left(k_{1}, k_{2}\right)+\zeta\left(k_{2}, k_{1}\right)+\zeta\left(k_{1}+k_{2}\right)
\end{aligned}
$$

Shuffle product (coming from the expression as iterated integrals)

Example in depth two ($k_{1}, k_{2} \geq 2$)

$$
\zeta\left(k_{1}\right) \cdot \zeta\left(k_{2}\right)=\int \ldots \cdot \int \ldots=\sum_{j=2}^{k_{1}+k_{2}-1}\left(\binom{j-1}{k_{1}-1}+\binom{j-1}{k_{2}-1}\right) \zeta\left(j, k_{1}+k_{2}-j\right)
$$

(1) MZV - Double shuffle relations

These two product expressions give various \mathbb{Q}-linear relations between MZV.

Example

$$
\begin{aligned}
\zeta(2,3)+3 \zeta(3,2)+ & 6 \zeta(4,1) \stackrel{\text { shuffle }}{=} \zeta(2) \cdot \zeta(3) \stackrel{\text { narmonic }}{=} \zeta(2,3)+\zeta(3,2)+\zeta(5) . \\
& \Longrightarrow 2 \zeta(3,2)+6 \zeta(4,1) \stackrel{\text { double shuffile }}{=} \zeta(5) .
\end{aligned}
$$

But there are more relations between MZV. e.g.:

$$
\sum_{m>n>0} \frac{1}{m^{2} n}=\zeta(2,1)=\zeta(3)=\sum_{n>0} \frac{1}{n^{3}}
$$

These follow from regularizing the double shuffle relations and they are called extended double shuffle relations.

(1) MZV - Conjectures

Conjectures

- The extended double shuffle relations give all linear relations among MZV and

$$
\mathcal{Z}=\bigoplus_{k \geq 0} \mathcal{Z}_{k}
$$

i.e. there are no relations between MZV of different weight.

- (Zagier) The dimension of the spaces \mathcal{Z}_{k} is given by

$$
\sum_{k \geq 0} \operatorname{dim}_{\mathbb{Q}} \mathcal{Z}_{k} X^{k}=\frac{1}{1-X^{2}-X^{3}}
$$

- (Hoffman) The following set gives a basis of \mathcal{Z}

$$
\left\{\zeta\left(k_{1}, \ldots, k_{r}\right) \mid r \geq 0, k_{1}, \ldots, k_{r} \in\{2,3\}\right\} .
$$

(1) MZV - Duality

There are other explicit families of relations among MZVs.

Definition

For any admissible index $\mathbf{k}=\left(k_{1}+1,\{1\}^{d_{1}-1}, \ldots, k_{r}+1,\{1\}^{d_{r}-1}\right) \quad\left(k_{i}, d_{i} \geq 1\right)$
its dual is defined as $\mathbf{k}^{\vee}:=\left(d_{r}+1,\{1\}^{k_{r}-1}, \ldots, d_{1}+1,\{1\}^{k_{1}-1}\right)$.
For example is $(2,1)^{\vee}=\left(1+1,\{1\}^{2-1}\right)^{\vee}=\left(2+1,\{1\}^{1-1}\right)=(3)$.

(1) MZV - Duality

There are other explicit families of relations among MZVs.

Definition

For any admissible index $\mathbf{k}=\left(k_{1}+1,\{1\}^{d_{1}-1}, \ldots, k_{r}+1,\{1\}^{d_{r}-1}\right) \quad\left(k_{i}, d_{i} \geq 1\right)$
its dual is defined as $\mathbf{k}^{\vee}:=\left(d_{r}+1,\{1\}^{k_{r}-1}, \ldots, d_{1}+1,\{1\}^{k_{1}-1}\right)$.
For example is $(2,1)^{\vee}=\left(1+1,\{1\}^{2-1}\right)^{\vee}=\left(2+1,\{1\}^{1-1}\right)=(3)$.

Theorem (Duality relation)

For every admissible index \mathbf{k} we have $\zeta(\mathbf{k})=\zeta\left(\mathbf{k}^{\vee}\right)$.

Proofs:

- Via iterated integral representation of MZVs and the change of variables $t_{i} \mapsto 1-t_{i}$.
- Seki-Yamamoto: Via connected sums.

(1) MZV - Duality

There are other explicit families of relations among MZVs.

Definition

For any admissible index $\mathbf{k}=\left(k_{1}+1,\{1\}^{d_{1}-1}, \ldots, k_{r}+1,\{1\}^{d_{r}-1}\right) \quad\left(k_{i}, d_{i} \geq 1\right)$
its dual is defined as $\mathbf{k}^{\vee}:=\left(d_{r}+1,\{1\}^{k_{r}-1}, \ldots, d_{1}+1,\{1\}^{k_{1}-1}\right)$.
For example is $(2,1)^{\vee}=\left(1+1,\{1\}^{2-1}\right)^{\vee}=\left(2+1,\{1\}^{1-1}\right)=(3)$.

Theorem (Duality relation)

For every admissible index \mathbf{k} we have $\zeta(\mathbf{k})=\zeta\left(\mathbf{k}^{\vee}\right)$.

Proofs:

- Via iterated integral representation of MZVs and the change of variables $t_{i} \mapsto 1-t_{i}$.
- Seki-Yamamoto: Via connected sums.

Open problem

Show that the duality relation is a consequence of the extended double shuffle relations.

(1) MZV - Broadhurst-Kreimer conjecture

$\operatorname{gr}_{r} \mathcal{Z}_{k}$: MZVs of weight k and depth r modulo lower depths MZVs.
Conjecture (Broadhurst-Kreimer, 1997)
The generating series of the dimensions of the weight- and depth-graded parts of multiple zeta values is given by

$$
\sum_{k, r \geq 0} \operatorname{dim}_{\mathbb{Q}}\left(\operatorname{gr}_{r} \mathcal{Z}_{k}\right) X^{k} Y^{r}=\frac{1+\mathrm{E}(X) Y}{1-\mathrm{O}(X) Y+\mathrm{S}(X) Y^{2}-\mathrm{S}(X) Y^{4}}
$$

where

$$
\mathrm{E}(X)=\frac{X^{2}}{1-X^{2}}, \quad \mathrm{O}(X)=\frac{X^{3}}{1-X^{2}}, \quad \mathrm{~S}(X)=\frac{X^{12}}{\left(1-X^{4}\right)\left(1-X^{6}\right)}=\sum_{k \geq 0} \overbrace{\operatorname{dim} S_{k}}^{\text {cusp forms }} X^{k} .
$$

Observe that

$$
\begin{aligned}
& \frac{1+\mathrm{E}(X) Y}{1-\mathrm{O}(X) Y+\mathrm{S}(X) Y^{2}-\mathrm{S}(X) Y^{4}} \\
& =1+(\mathrm{E}(X)+\mathrm{O}(X)) Y+((\mathrm{E}(X)+\mathrm{O}(X)) \mathrm{O}(X)-\mathrm{S}(X)) Y^{2}+\cdots .
\end{aligned}
$$

(1) MZV - Modular forms \rightarrow relations among double zeta values

M_{k} : Modular forms of weight k for $\mathrm{SL}_{2}(\mathbb{Z})$.
Theorem (Gangl-Kaneko-Zagier, 2006)
There are at least $\operatorname{dim} M_{k}$ (linearly independent) relations among $\zeta(k)$ and the double zeta values $\zeta(a, b)$ with a, b odd and $a+b=k$. (Conjecturally these are the only ones)

(1) MZV - Modular forms \rightarrow relations among double zeta values

M_{k} : Modular forms of weight k for $\mathrm{SL}_{2}(\mathbb{Z})$.
Theorem (Gangl-Kaneko-Zagier, 2006)
There are at least $\operatorname{dim} M_{k}$ (linearly independent) relations among $\zeta(k)$ and the double zeta values $\zeta(a, b)$ with a, b odd and $a+b=k$. (Conjecturally these are the only ones)

- For each Eisenstein series G_{k} we have $\zeta(1, k-1)+\cdots+\zeta(k-3,3)=\frac{1}{4} \zeta(k)$.
- In weight 12 we have the relation ("from" the cusp form $\Delta(q)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}$)

$$
28 \zeta(9,3)+150 \zeta(7,5)+168 \zeta(5,7)=\frac{5197}{691} \zeta(12) .
$$

Explanation: Use double shuffle relations + period polynomials or q-analogues of MZVs.

Rough picture

$$
q \text {-analogues of MZVs }=q \text {-series in } \mathbb{Q} \llbracket q \rrbracket \text { "behaving" like MZVs }(q \rightarrow 1)
$$

There are various motivations for studying q-analogues of MZV:

- Bridge between MZVs and modular forms. (my motivation).
- Appear in theoretical physics ($N=4$ Super-Yang-Mills theory - Okazaki-sans talk ?).
- Connection with enumerative geometry (Hilbert schemes of points on surfaces - Yanagida-sans talk?).
- Can be used to renormalize/regularize multiple zeta values.
- Just for fun.

(2) q-analogues - Idea

"Roughly speaking, in mathematics, specifically in the areas of combinatorics and special functions, a q-analogue of a theorem, identity or expression is a generalization involving a new parameter q that returns the original theorem, identity or expression in the limit as $q \rightarrow 1$."

- The easiest example is the q-analogue of a natural number m given by

$$
[m]_{q}=\frac{1-q^{m}}{1-q}=1+q+\cdots+q^{m-1}, \quad \lim _{q \rightarrow 1}[m]_{q}=m
$$

(2) q-analogues-Idea

"Roughly speaking, in mathematics, specifically in the areas of combinatorics and special functions, a q-analogue of a theorem, identity or expression is a generalization involving a new parameter q that returns the original theorem, identity or expression in the limit as $q \rightarrow 1$."

- The easiest example is the q-analogue of a natural number m given by

$$
[m]_{q}=\frac{1-q^{m}}{1-q}=1+q+\cdots+q^{m-1}, \quad \lim _{q \rightarrow 1}[m]_{q}=m
$$

- Naive approach for q-analogue of MZV: Replace $\frac{1}{m^{k}}$ by $\frac{1}{[m]_{q}^{k}}$:

$$
\sum_{m_{1}>\cdots>m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \leadsto \sum_{m_{1}>\cdots>m_{r}>0} \frac{1}{\left[m_{1}\right]_{q}^{k_{1}} \cdots\left[m_{r}\right]_{q}^{k_{r}}}{ }^{\bullet}=, \infty+O(q)
$$

Problem: This sum does not make sense as an element in $\mathbb{Q} \llbracket q \rrbracket$.

(2) q-analogues-Create q-analogues of MZVs

General idea

Replace $\frac{1}{m^{k}}$ by $\frac{P\left(q^{m}\right)}{[m]_{q}^{k}}$ with some good polynomial P.
In general, one can consider for polynomials $P_{1} \in X \mathbb{Q}[X], P_{2}, \ldots, P_{r} \in \mathbb{Q}[X]$ the following sum

$$
\sum_{m_{1}>\cdots>m_{r}>0} \frac{P_{1}\left(q^{m_{1}}\right) \cdots P_{r}\left(q^{m_{r}}\right)}{\left[m_{1}\right]_{q}^{k_{1}} \cdots\left[m_{r}\right]_{q}^{k_{r}}}
$$

These satisfy (as long as the P_{i} are "nice" and satisfy $P_{i}(1)=1$)

$$
\lim _{q \rightarrow 1} \sum_{m_{1}>\cdots>m_{r}>0} \frac{P_{1}\left(q^{m_{1}}\right) \cdots P_{r}\left(q^{m_{r}}\right)}{\left[m_{1}\right]_{q}^{k_{1}} \cdots\left[m_{r}\right]_{q}^{k_{r}}}=\zeta\left(k_{1}, \ldots, k_{r}\right)
$$

and therefore they are q-analogues of multiple zeta values.

(2) q-analogues-Modified q-analogues

For the connection to modular forms it is more natural to consider modified versions of q-analogues.

Definition

A modified q-analogue of weight k of $c \in \mathbb{C}$ is a q-series $f(q) \in \mathbb{C} \llbracket q \rrbracket$, such that

$$
\lim _{q \rightarrow 1}(1-q)^{k} f(q)=c
$$

Proposition

Any modular form $f(q)=\sum_{n \geq 0} a_{n} q^{n} \in M_{k}$ is a modified q-analogue of $(2 \pi i)^{k} a_{0}$ (of weight k).

(2) q-analogues-Modified q-analogues

For the connection to modular forms it is more natural to consider modified versions of q-analogues.

Definition

A modified q-analogue of weight k of $c \in \mathbb{C}$ is a q-series $f(q) \in \mathbb{C} \llbracket q \rrbracket$, such that

$$
\lim _{q \rightarrow 1}(1-q)^{k} f(q)=c
$$

Proposition

Any modular form $f(q)=\sum_{n \geq 0} a_{n} q^{n} \in M_{k}$ is a modified q-analogue of $(2 \pi i)^{k} a_{0}$ (of weight k).

Modified general idea

Replace $\frac{1}{m^{k}}$ by $\frac{P\left(q^{m}\right)}{\left(1-q^{m}\right)^{k}}$ with some good polynomial P. Notice that

$$
(1-q)^{k} \frac{P\left(q^{m}\right)}{\left(1-q^{m}\right)^{k}}=\frac{P\left(q^{m}\right)}{[m]_{q}^{k}}
$$

(2) q-analogues - General modified q-MZVs

Definition (B.-Kühn (2017))

For $k_{1}, \ldots, k_{r} \geq 1$, polynomials $P_{1}(X) \in X \mathbb{Q}[X]$ and $P_{2}(X), \ldots, P_{r}(X) \in \mathbb{Q}[X]$ we define

$$
\zeta_{q}\left(k_{1}, \ldots, k_{r} ; P_{1}, \ldots, P_{r}\right)=\sum_{m_{1}>\cdots>m_{r}>0} \frac{P_{1}\left(q^{m_{1}}\right) \cdots P_{r}\left(q^{m_{r}}\right)}{\left(1-q^{m_{1}}\right)^{k_{1}} \cdots\left(1-q^{m_{r}}\right)^{k_{r}}}
$$

We only consider the case where $\operatorname{deg}\left(P_{j}\right) \leq k_{j}$ and consider the following \mathbb{Q}-vector space

$$
\mathcal{Z}_{q}:=\mathbb{Q}+\left\langle\zeta_{q}\left(k_{1}, \ldots, k_{r} ; P_{1}, \ldots, P_{r}\right) \mid r \geq 1, k_{1}, \ldots, k_{r} \geq 1, \operatorname{deg}\left(P_{j}\right) \leq k_{j}\right\rangle_{\mathbb{Q}}
$$

These are (modified) q-analogues of multiple zeta values:
For $k_{1} \geq 2, k_{2}, \ldots, k_{r} \geq 1$ we have

$$
\lim _{q \rightarrow 1}(1-q)^{k_{1}+\cdots+k_{r}} \zeta_{q}\left(k_{1}, \ldots, k_{r} ; P_{1}, \ldots, P_{r}\right)=P_{1}(1) \cdots P_{r}(1) \zeta\left(k_{1}, \ldots, k_{r}\right)
$$

(2) q-analogues-Analogue of the harmonic product

Similarly as for MZVs we have:
Harmonic product (coming from the definition as iterated sums)
Example in depth two ($k_{1}, k_{2} \geq 2$)

$$
\begin{aligned}
\zeta_{q}\left(k_{1} ; P_{1}\right) \zeta_{q}\left(k_{2} ; P_{2}\right) & =\sum_{m>0} \frac{P_{1}\left(q^{m}\right)}{\left(1-q^{m}\right)^{k_{1}}} \sum_{n>0} \frac{P_{2}\left(q^{n}\right)}{\left(1-q^{n}\right)^{k_{2}}} \\
& =\left(\sum_{m>n>0}+\sum_{n>m>0}+\sum_{m=n>0}\right) \frac{P_{1}\left(q^{m}\right)}{\left(1-q^{m}\right)^{k_{1}}} \frac{P_{2}\left(q^{n}\right)}{\left(1-q^{n}\right)^{k_{2}}} \\
& =\zeta_{q}\left(k_{1}, k_{2} ; P_{1}, P_{2}\right)+\zeta_{q}\left(k_{2}, k_{1} ; P_{2}, P_{1}\right)+\zeta_{q}\left(k_{1}+k_{2} ; P_{1} \cdot P_{2}\right)
\end{aligned}
$$

In particular, \mathcal{Z}_{q} is a \mathbb{Q}-algebra by using the above argument in arbitrary depth.

(2) q-analogues - Questions

Recalling the results on MZV, one should have the following questions:

Questions

- What about the shuffle product?
- Iterated integrals?
- What are the relations?
- Dimension?
- Good choice of polynomials P_{i} ?
- Why the condition $\operatorname{deg}\left(P_{j}\right) \leq k_{j}$?

In the following, we give an overview of several different models (choices of P_{i}) for q-analogues of MZVs and address some of the above questions.

(2) q-analogues - Bradley-Zhao(-Takeyama)

One of the most classical q-analogue models was introduced by Bradley and Zhao.
Definition (Bradley (2004), Zhao (2003))
For $k_{1} \geq 2, k_{2}, \ldots, k_{r} \geq 1$ define

$$
\begin{aligned}
\zeta_{q}^{\mathrm{BZ}}(\mathbf{k})=\zeta_{q}^{\mathrm{BZ}}\left(k_{1}, \ldots, k_{r}\right) & =\zeta_{q}\left(k_{1}, \ldots, k_{r} ; X^{k_{1}-1}, \ldots, X^{k_{r}-1}\right) \\
& =\sum_{m_{1}>\cdots>m_{r}>0} \frac{q^{m_{1}\left(k_{1}-1\right)} \cdots q^{m_{r}\left(k_{r}-1\right)}}{\left(1-q^{m_{1}}\right)^{k_{1}} \cdots\left(1-q^{m_{r}}\right)^{k_{r}}}
\end{aligned}
$$

Harmonic product:

$$
\zeta_{q}^{\mathrm{BZ}}\left(k_{1}\right) \zeta_{q}^{\mathrm{BZ}}\left(k_{2}\right)=\zeta_{q}^{\mathrm{BZ}}\left(k_{1}, k_{2}\right)+\zeta_{q}^{\mathrm{BZ}}\left(k_{2}, k_{1}\right)+\zeta_{q}^{\mathrm{BZ}}\left(k_{1}+k_{2}\right)+\zeta_{q}^{\mathrm{BZ}}\left(k_{1}+k_{2}-1\right)
$$

Results for the Bradley-Zhao model

- (Bradley 2004/Seki-Yamamoto 2019) The duality relation holds: $\zeta_{q}^{\mathrm{BZ}}(\mathbf{k})=\zeta_{q}^{\mathrm{BZ}}\left(\mathbf{k}^{\vee}\right)$.
- (Takeyama 2013): Extended definition and description of an analogue of the shuffle product \& some relations.

(2) q-analogues - Okounkov

In connection with Hilbert schemes of surfaces Okounkov considers the following (See Yanagida-sans talk).
Definition (Okounkov (2014))
For $k_{1}, \ldots, k_{r} \geq 2$ define

$$
\zeta_{q}^{\mathrm{O}}\left(k_{1}, \ldots, k_{r}\right)=\zeta_{q}\left(k_{1}, \ldots, k_{r} ; O_{k_{1}}(X), \ldots, O_{k_{r}}(X)\right),
$$

where

$$
O_{k}(X)= \begin{cases}X^{\frac{k}{2}} & k=2,4,6, \ldots \\ X^{\frac{k-1}{2}}(1+X) & k=3,5,7, \ldots\end{cases}
$$

Results for the Okounkov model

- (Okounkov 2014): Dimension conjecture for the space spanned by ζ^{O} (proper subspace of \mathcal{Z}_{q}) and conjectural connections to problems in enumerative geometry.

(2) q-analogues-Schlesinger-Zudilin

Definition (Schlesinger (2001), Zudilin (2003), Singer (2015))

For $k_{1} \geq 1, k_{2}, \ldots, k_{r} \geq 0$ define

$$
\begin{aligned}
\zeta_{q}^{\mathrm{SZ}}(\mathbf{k})=\zeta_{q}^{\mathrm{SZ}}\left(k_{1}, \ldots, k_{r}\right) & =\zeta_{q}\left(k_{1}, \ldots, k_{r} ; X^{k_{1}}, \ldots, X^{k_{r}}\right) \\
& =\sum_{m_{1}>\cdots>m_{r}>0} \frac{q^{m_{1} k_{1}} \cdots q^{m_{r} k_{r}}}{\left(1-q^{m_{1}}\right)^{k_{1}} \cdots\left(1-q^{m_{r}}\right)^{k_{r}}}
\end{aligned}
$$

Harmonic product (same as for MZVs):

$$
\zeta_{q}^{\mathrm{SZ}}\left(k_{1}\right) \zeta_{q}^{\mathrm{SZ}}\left(k_{2}\right)=\zeta_{q}^{\mathrm{SZ}}\left(k_{1}, k_{2}\right)+\zeta_{q}^{\mathrm{SZ}}\left(k_{2}, k_{1}\right)+\zeta_{q}^{\mathrm{SZ}}\left(k_{1}+k_{2}\right)
$$

Results for the Schlesinger-Zudilin model

- (Zhao 2014, Ebrahimi-Fard-Manchon-Singer 2016): SZ-Duality and description of the shuffle product.
- (B.-Kühn 2017) The $\zeta_{q}^{\text {SZ }}$ span the space \mathcal{Z}_{q}.

(2) q-analogues-SZ-Duality

Definition

- We call an index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Z}^{r}$ with $k_{1} \geq 1, k_{2}, \ldots, k_{r} \geq 0$ SZ-admissible.
- Its weight is given by $k_{1}+\cdots+k_{r}+\#\left\{j \mid k_{j}=0\right\}$.
- Write $\mathbf{k}=\left(l_{1},\{0\}^{d_{1}}, \ldots, l_{s},\{0\}^{d_{s}}\right)\left(l_{i} \geq 1, d_{j} \geq 0\right)$ and define its $\mathbf{S Z}$-dual by

$$
\mathbf{k}^{\dagger}:=\left(d_{s}+1,\{0\}^{l_{s}-1}, \ldots, d_{1}+1,\{0\}^{l_{1}-1}\right) .
$$

Theorem (Zhao (2014), Singer (2014))

For every SZ-admissible index \mathbf{k} we have: $\zeta_{q}^{S Z}(\mathbf{k})=\zeta_{q}^{S Z}\left(\mathbf{k}^{\dagger}\right)$.

Example $\zeta_{q}^{\mathrm{SZ}}(2)=\zeta_{q}^{\mathrm{SZ}}(1,0)$.

We give a combinatorial explanation of the SZ-duality later using partitions.

(2) q-analogues-SZ-Duality

"Proposition"

SZ-duality + harmonic product + SZ-duality $=$ shuffle product

Example $\quad \zeta_{q}^{\mathrm{SZ}}(2) \zeta_{q}^{\mathrm{SZ}}(3)=\zeta_{q}^{\mathrm{SZ}}(1,0) \zeta_{q}^{\mathrm{SZ}}(1,0,0)$

$$
\begin{aligned}
= & \zeta_{q}^{\mathrm{SZ}}(1,0,0,1,0)+3 \zeta_{q}^{\mathrm{SZ}}(1,0,1,0,0)+6 \zeta_{q}^{\mathrm{SZ}}(1,1,0,0,0) \\
& +7 \zeta_{q}^{\mathrm{SZ}}(1,1,0,0)+2 \zeta_{q}^{\mathrm{SZ}}(2,0,0)+3 \zeta_{q}^{\mathrm{SZ}}(2,0,0,0) \\
& +\zeta_{q}^{\mathrm{SZ}}(1,1,0)+2 \zeta_{q}^{\mathrm{SZ}}(1,0,1,0) \\
= & \left.\zeta_{q}^{\mathrm{SZ}}(2,3)+3 \zeta_{q}^{\mathrm{SZ}}(3,2)+6 \zeta_{q}^{\mathrm{SZ}}(4,1)+\text { (Terms of weight }<5\right) .
\end{aligned}
$$

After multiplication with $(1-q)^{5}$ and taking the limit $q \rightarrow 1$, we get

$$
\zeta(2) \zeta(3)=\zeta(2,3)+3 \zeta(3,2)+6 \zeta(4,1)
$$

(2) q-analogues-q-analogues of MZV

Theorem (B.-Kühn, 2017)

- The space \mathcal{Z}_{q} is a \mathbb{Q}-algebra.
- It contains the space of (quasi-)modular forms with rational coefficients.
- It is closed under the operator $q \frac{d}{d q}$.

Similar to the double shuffle relations for MZVs we can prove relations in \mathcal{Z}_{q}, e.g.

$$
\begin{aligned}
-\zeta_{q}^{\mathrm{SZ}}(6)+6 \zeta_{q}^{\mathrm{SZ}}(3,3)-3 \zeta_{q}^{\mathrm{SZ}}(4,2) & =\zeta_{q}^{\mathrm{SZ}}(5)-6 \zeta_{q}^{\mathrm{SZ}}(2,3)-2 \zeta_{q}^{\mathrm{SZ}}(3,2) \\
& -5 \zeta_{q}^{\mathrm{SZ}}(2,2)-\zeta_{q}^{\mathrm{SZ}}(3,1)-\zeta_{q}^{\mathrm{SZ}}(2,1)
\end{aligned}
$$

These relations are between q-analouges of mixed weight.

Question

$$
\text { Are there weight graded } q \text {-analogues? }
$$

Answer: Yes! (Combinatorial) Multiple Eisenstein series.

(3) Multiple Eisenstein series \& the q-series g-Order on lattices

For $M \geq 1$ set

$$
\mathbb{Z}_{M}=\{m \in \mathbb{Z}| | m \mid<M\}
$$

and for $\tau \in \mathbb{H}$ define on $\mathbb{Z} \tau+\mathbb{Z}$ the order \succ by

$$
m_{1} \tau+n_{1} \succ m_{2} \tau+n_{2} \quad: \Leftrightarrow \quad\left(m_{1}>m_{2}\right) \text { or }\left(m_{1}=m_{2} \text { and } n_{1}>n_{2}\right) .
$$

All the points $\lambda \in \mathbb{Z}_{5} i+\mathbb{Z}_{6}$ satisfying $\lambda \succ 0$.

(3) Multiple Eisenstein series \& the q-series g-Multiple Eisenstein series

For $M \geq 1$ set

$$
\mathbb{Z}_{M}=\{m \in \mathbb{Z}| | m \mid<M\}
$$

and for $\tau \in \mathbb{H}$ define on $\mathbb{Z} \tau+\mathbb{Z}$ the order \succ by

$$
m_{1} \tau+n_{1} \succ m_{2} \tau+n_{2} \quad: \Leftrightarrow \quad\left(m_{1}>m_{2}\right) \text { or }\left(m_{1}=m_{2} \text { and } n_{1}>n_{2}\right) .
$$

Definition

For integers $k_{1}, \ldots, k_{r} \geq 1$, and $M, N \geq 1$ we define the truncated multiple Eisenstein series by

$$
\mathbb{G}_{M, N}\left(k_{1}, \ldots, k_{r}\right)=\sum_{\substack{\lambda_{1} \succ \ldots \succ \lambda_{r} \succ 0 \\ \lambda_{i} \in \mathbb{Z}_{M} \tau+\mathbb{Z}_{N}}} \frac{1}{\lambda_{1}^{k_{1}} \cdots \lambda_{r}^{k_{r}}} .
$$

For $k_{1}, \ldots, k_{r} \geq 2$ the multiple Eisenstein series are defined by

$$
\mathbb{G}\left(k_{1}, \ldots, k_{r}\right)=\lim _{M \rightarrow \infty} \lim _{N \rightarrow \infty} \mathbb{G}_{M, N}\left(k_{1}, \ldots, k_{r}\right) .
$$

(3) Multiple Eisenstein series \& the q-series g-The q-series g

Definition

For $k_{1}, \ldots, k_{r} \geq 1$ we define the q-series $g\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Q}[[q]]$ by

$$
g\left(k_{1}, \ldots, k_{r}\right)=\sum_{\substack{m_{1}>\cdots>m_{r}>0 \\ n_{1}, \ldots, n_{r}>0}} \frac{n_{1}^{k_{1}-1}}{\left(k_{1}-1\right)!} \cdots \frac{n_{r}^{k_{r}-1}}{\left(k_{r}-1\right)!} q^{m_{1} n_{1}+\cdots+m_{r} n_{r}}
$$

In the case $r=1$ these are the generating series of divisor-sums $\sigma_{k-1}(n)=\sum_{d \mid n} n^{k-1}$

$$
g(k)=\sum_{m, n>0} \frac{n^{k-1}}{(k-1)!} q^{m n}=\frac{1}{(k-1)!} \sum_{n>0} \sigma_{k-1}(n) q^{n}
$$

and they can be viewed as q-analogues of multiple zeta values, since for $k_{1} \geq 2, k_{2}, \ldots, k_{r} \geq 1$ we have

$$
\lim _{q \rightarrow 1}(1-q)^{k_{1}+\cdots+k_{r}} g\left(k_{1}, \ldots, k_{r}\right)=\zeta\left(k_{1}, \ldots, k_{r}\right)
$$

(3) Multiple Eisenstein series \& the q-series g-Fourier expansion

$$
\hat{g}\left(k_{1}, \ldots, k_{r}\right):=(-2 \pi i)^{k_{1}+\cdots+k_{r}} g\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Q}[\pi i] \llbracket q \rrbracket .
$$

Theorem (Gangl-Kaneko-Zagier 2006 ($r=2$), B. $2012(r \geq 2)$)
For $k_{1}, \ldots, k_{r} \geq 2$ there exist explicit $\alpha_{l_{1}, \ldots, l_{r}, j}^{k_{1}, \ldots, k_{r}} \in \mathbb{Z}$, such that for $q=e^{2 \pi i \tau}$ we have

$$
\mathbb{G}\left(k_{1}, \ldots, k_{r}\right)=\zeta\left(k_{1}, \ldots, k_{r}\right)+\sum_{\substack{0<j<r \\ l_{1}+\cdots+l_{r}=k_{1}+\cdots+k_{r}}} \alpha_{l_{1}, \ldots, l_{r}, j}^{k_{1}, \ldots, k_{r}} \zeta\left(l_{1}, \ldots, l_{j}\right) \hat{g}\left(l_{j+1}, \ldots, l_{r}\right)+\hat{g}\left(k_{1}, \ldots, k_{r}\right) .
$$

In particular, $\mathbb{G}\left(k_{1}, \ldots, k_{r}\right)=\zeta\left(k_{1}, \ldots, k_{r}\right)+\sum_{n>0} a_{k_{1}, \ldots, k_{r}}(n) q^{n}$ for some $a_{k_{1}, \ldots, k_{r}}(n) \in \mathcal{Z}[\pi i]$.
Examples

$$
\begin{aligned}
\mathbb{G}(k) & =\zeta(k)+\hat{g}(k) \\
\mathbb{G}(3,2) & =\zeta(3,2)+3 \zeta(3) \hat{g}(2)+2 \zeta(2) \hat{g}(3)+\hat{g}(3,2) .
\end{aligned}
$$

(3) Multiple Eisenstein series \& the q-series g-MacMahon's generalized sums-of-divisors

- The coefficients of $g\left(k_{1}, \ldots, k_{r}\right)$ can be seen as "multiple divisor-sums" (B.-Kühn 2013).
- They generalize the MacMahon's generalized sums-of-divisors $(r \geq 1)$:

$$
A_{r}(q)=\sum_{m_{1}>\cdots>m_{r}>0} \frac{q^{m_{1}+\cdots+m_{r}}}{\left(1-q^{m_{1}}\right)^{2} \cdots\left(1-q^{m_{r}}\right)^{2}}=g(\underbrace{2, \ldots, 2}_{r}) .
$$

One consequence of the formula for the Fourier expansion of multiple Eisenstein series is the following.

Theorem (B. 2024+)

We have

$$
1+\sum_{r \geq 1} A_{r}(q) X^{2 r}=\frac{2}{X} \arcsin \left(\frac{X}{2}\right) \exp \left(\sum_{j \geq 1} \frac{(-1)^{j-1}}{j} G_{2 j}(q)\left(2 \arcsin \left(\frac{X}{2}\right)\right)^{2 j}\right)
$$

where $G_{k}(q)=-\frac{B_{k}}{2 k!}+\frac{1}{(k-1)!} \sum_{m, n \geq 1} n^{k-1} q^{m n}$.
In particular, $A_{r}(q)$ are quasimodular forms (Rose-Andrews 2013).
One can show in general that $g(2 k, \ldots, 2 k)$ for $k \geq 1$ are quasimodular forms (of mixed weight).

The g can be written in terms of ζ_{q} as

$$
g\left(k_{1}, \ldots, k_{r}\right)=\zeta_{q}\left(k_{1}, \ldots, k_{r} ; E_{k_{1}}, \ldots, E_{k_{r}}\right)
$$

where $E_{k}(X)$ are the Eulerian polynomials defined by $\frac{E_{k}(X)}{(1-X)^{k}}=\frac{1}{(k-1)!} \sum_{d \geq 1} d^{k-1} X^{d}$.

Proposition

For $k_{1}, k_{2} \geq 1$ we have

$$
g\left(k_{1}\right) g\left(k_{2}\right)=g\left(k_{1}, k_{2}\right)+g\left(k_{2}, k_{1}\right)+g\left(k_{1}+k_{2}\right)+\sum_{j=1}^{k_{1}+k_{2}-1} \lambda_{k_{1}, k_{2}}^{j} g(j)
$$

for some explicit $\lambda_{k_{1}, k_{2}}^{j} \in \mathbb{Q}$.

Example $g(2) g(3)=g(2,3)+g(3,2)+g(5)-\frac{1}{12} g(3)$.

(3) Multiple Eisenstein series \& the q-series g-Derivatives

Now consider the derivative $q \frac{d}{d q}$

$$
q \frac{d}{d q} g_{k}(q)=q \frac{d}{d q} \sum_{\substack{m>0 \\ n>0}} \frac{n^{k-1}}{(k-1)!} q^{m n}=\sum_{\substack{m>0 \\ n>0}} \frac{m n^{k}}{(k-1)!} q^{m n}
$$

We see that after taking the derivative we also have a m appearing in the numerator. Moreover if we would take the d-th derivative we would get

$$
\left(q \frac{d}{d q}\right)^{d} g_{k}(q)=\sum_{\substack{m>0 \\ n>0}} \frac{m^{d} n^{k+d-1}}{(k-1)!} q^{m n}
$$

This leads us to define g in a more general way.

(3) Multiple Eisenstein series \& the q-series g-Double indexed g

Definition

For $k_{1}, \ldots k_{r} \geq 1, d_{1}, \ldots, d_{r} \geq 0$ define the q-series

$$
g\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}}=\sum_{\substack{m_{1}>\cdots>m_{r}>0 \\ n_{1}, \ldots, n_{r}>0}} \frac{m_{1}^{d_{1}} n_{1}^{k_{1}-1}}{\left(k_{1}-1\right)!} \cdots \frac{m_{r}^{d_{r}} n_{r}^{k_{r}-1}}{\left(k_{r}-1\right)!} q^{m_{1} n_{1}+\cdots+m_{r} n_{r}}
$$

We say that this has weight $k_{1}+\cdots+k_{r}+d_{1}+\cdots+d_{r}$.
With the same idea as before we get

$$
q \frac{d}{d q} g\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}}=\sum_{j=1}^{r} k_{j} g\binom{k_{1}, \ldots k_{j}+1, \ldots, k_{r}}{d_{1}, \ldots, d_{j}+1, \ldots, d_{r}} .
$$

What about their product?

(3) Multiple Eisenstein series \& the q-series g-Product

The product for the harmonic product generalizes easily by just adding the d_{j} :

Proposition

For $k_{1}, k_{2} \geq 1, d_{1}, d_{2} \geq 0$ we have

$$
g\binom{k_{1}}{d_{1}} g\binom{k_{2}}{d_{2}}=g\binom{k_{1}, k_{2}}{d_{1}, d_{2}}+g\binom{k_{2}, k_{1}}{d_{2}, d_{1}}+g\binom{k_{1}+k_{2}}{d_{1}+d_{2}}+\sum_{j=1}^{k_{1}+k_{2}-1} \lambda_{k_{1}, k_{2}}^{j} g\binom{j}{d_{1}+d_{2}}
$$

where $\lambda_{k_{1}, k_{2}}^{j} \in \mathbb{Q}$ is the same as before.
The harmonic product looks more complicated (compared to the SZ-model), but we can relate the double indexed g nicely to partitions.

Conjugation of partitions

$$
7=3+2+1+1=4+2+1
$$

Young diagram

Stanley's coordinates

$$
\text { marts } \quad \rightarrow\left(\begin{array}{l}
3,2,1,1 \\
3, \\
1,1,2
\end{array}\right) \quad(4,2,1)
$$

(3) Multiple Eisenstein series \& the q-series g-Connection with partitions

$$
g\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}}=\sum_{\substack{m_{1}>\cdots>m_{r}>0 \\ n_{1}, \ldots, n_{r}>0}} \underbrace{\frac{m_{1}^{d_{1}} n_{1}^{k_{1}-1}}{\left(k_{1}-1\right)!} \ldots \frac{m_{r}^{d_{r}} n_{r}^{k_{r}-1}}{\left(k_{r}-1\right)!} q^{m_{1} n_{1}+\cdots+m_{r} n_{r}}=\sum_{N>0} \sum_{\lambda \in \operatorname{Part}_{r}(N)} \sum_{N(\lambda)} q^{N} . . .(\lambda)}_{f(\lambda)}
$$

$\operatorname{Part}_{r}(N)$: Partitions of N made out of r different parts.
Any element $\lambda \in \operatorname{Part}_{r}(N)$ can be represented by a Young diagram

(3) Multiple Eisenstein series \& the q-series g-Conjugation

On $\operatorname{Part}_{r}(N)$ we have an involution given by the conjugation $\lambda \mapsto \lambda^{\prime}$ of Young diagrams.

Since we sum over all elements in $\operatorname{Part}_{r}(N)$ we obtain linear relations among g

$$
g\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}}=\sum_{N>0}\left(\sum_{\lambda \in \operatorname{Part}_{r}(N)} f(\lambda)\right) q^{N}=\sum_{N>0}\left(\sum_{\lambda \in \operatorname{Part}_{r}(N)} f\left(\lambda^{\prime}\right)\right) q^{N}=\sum * g\binom{*, \ldots, *}{*, \ldots, *} .
$$

(3) Multiple Eisenstein series \& the q-series g-Conjugation

Example In depth one the conjugation is just the interchange $m \leftrightarrow n$ and we have for any $k \geq 1, d \geq 0$

$$
g\binom{k}{d}=\sum_{\substack{m>0 \\ n>0}} \frac{m^{d} n^{k-1}}{(k-1)!} q^{m n}=\frac{d!}{(k-1)!} \sum_{\substack{m>0 \\ n>0}} \frac{m^{d} n^{k-1}}{d!} q^{m n}=\frac{d!}{(k-1)!} g\binom{d+1}{k-1}
$$

In depth two the conjugation is given by the variable change $m_{1} \rightarrow n_{1}+n_{2}$ and $m_{2} \rightarrow n_{1}$

$$
\begin{aligned}
g\binom{1,1}{1,2} & =\sum_{\substack{m_{1}>m_{2}>0 \\
n_{1}, n_{2}>0}} m_{1} m_{2}^{2} q^{m_{1} n_{1}+m_{2} n_{2}}=\sum_{\substack{m_{1}>m_{2}>0 \\
n_{1}, n_{2}>0}}\left(n_{1}+n_{2}\right) n_{1}^{2} q^{m_{1} n_{1}+m_{2} n_{2}} \\
& =6 \sum_{\substack{m_{1}>m_{2}>0 \\
n_{1}, n_{2}>0}} \frac{n_{1}^{3}}{6} q^{m_{1} n_{1}+m_{2} n_{2}}+2 \sum_{\substack{m_{1}>m_{2}>0 \\
n_{1}, n_{2}>0}} \frac{n_{1}^{2} n_{2}}{2} q^{m_{1} n_{1}+m_{2} n_{2}} \\
& =6 g\binom{4,1}{0,0}+2 g\binom{3,2}{0,0}=6 g(4,1)+2 g(3,2)
\end{aligned}
$$

(3) Multiple Eisenstein series \& the q-series g-Shuffle product analogue

Combining the harmonic product and the conjugation gives another way to express the product.

$$
\begin{aligned}
g(2) g(3) & =g\binom{2}{0} g\binom{3}{0}=\frac{1}{2} g\binom{1}{1} g\binom{1}{2} \\
& =\frac{1}{2}\left(g\binom{1,1}{1,2}+g\binom{1,1}{2,1}+g\binom{2}{3}-g\binom{1}{3}\right) \\
& =g\binom{2,3}{0,0}+3 g\binom{3,2}{0,0}+6 g\binom{4,1}{0,0}+3 g\binom{4}{1}-3 g\binom{4}{0} .
\end{aligned}
$$

Using $q \frac{d}{d q} g\binom{3}{0}=3 g\binom{4}{1}$ we obtain

$$
g(2) g(3)=g(2,3)+3 g(3,2)+6 g(4,1)-3 g(4)+q \frac{d}{d q} g(3),
$$

which looks (again as in the SZ-duality example) similar to $\zeta(2) \zeta(3)=\zeta(2,3)+3 \zeta(3,2)+6 \zeta(4,1)$.

(3) Multiple Eisenstein series \& the q-series g-Explicit shuffle product

Corollary

For $k_{1}, k_{2} \geq 1$ and $k=k_{1}+k_{2}$ we have

$$
\begin{aligned}
g\left(k_{1}\right) g\left(k_{2}\right)= & \sum_{j=1}^{k-1}\left(\binom{j-1}{k_{1}-1}+\binom{j-1}{k_{2}-1}\right) g(j, k-j) \\
& +\binom{k-2}{k_{1}-1}\left(q \frac{d}{d q} \frac{g(k-2)}{k-2}-g(k-1)\right)+\delta_{k_{1}, 1} \delta_{k_{2}, 1} g(2)
\end{aligned}
$$

where $\delta_{i, j}=\left\{\begin{array}{ll}1, & i=j \\ 0, & i \neq j\end{array}\right.$ denotes the Kronecker delta.
Recall the shuffle product for MZVs in lowest depths $\left(k_{1}, k_{2} \geq 2\right)$:

$$
\zeta\left(k_{1}\right) \cdot \zeta\left(k_{2}\right)=\int \ldots \cdot \int \ldots=\sum_{j=2}^{k_{1}+k_{2}-1}\left(\binom{j-1}{k_{1}-1}+\binom{j-1}{k_{2}-1}\right) \zeta\left(j, k_{1}+k_{2}-j\right) .
$$

(3) Multiple Eisenstein series \& the q-series g-Conjugation = SZ-duality

Proposition (B.-Kühn, 2017)

The space \mathcal{Z}_{q} is spanned by the double indexed g.
In particular, we can apply the relation obtained from the conjugation of partitions to any element in \mathcal{Z}_{q}.

Proposition (Brindle, 2021)

Applying the conjugation to $\zeta_{q}^{\mathrm{SZ}}(\mathbf{k})$ gives exactly $\zeta_{q}^{\mathrm{SZ}}\left(\mathbf{k}^{\dagger}\right)$.

Conjecture (B., 2014)

- The space \mathcal{Z}_{q} is spanned by the single indexed g.
- All relations in \mathcal{Z}_{q} are obtained from the conjugation and the harmonic product.

(3) Multiple Eisenstein series \& the q-series g-Combinatorial MES

Theorem (B.-Burmester, 2023)

For $k_{1}, \ldots, k_{r} \geq 1$ there exist $G\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Q} \llbracket q \rrbracket$ such that

- In depth $r=1$ they are the classical Eisenstein series $G(k)=-\frac{B_{k}}{2 k!}+\frac{1}{(k-1)!} \sum_{m, n \geq 1} n^{k-1} q^{m n}$.
- They satisfy the harmonic product formula.
- For $k_{1} \geq 2$ we have $\lim _{q \rightarrow 1}(1-q)^{k_{1}+\cdots+k_{r}} G\left(k_{1}, \ldots, k_{r}\right)=\zeta\left(k_{1}, \ldots, k_{r}\right)$.
- They (conjecturally) span the space \mathcal{Z}_{q}.
- They are (conjecturally) graded by weight.
(More generally, we construct $G\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}}$ by using the double indexed g)

Example

$$
\begin{aligned}
G(2,1,1) & =\frac{1}{1440}+\frac{1}{6} g(2)-g(2,1)+g(2,1,1) \\
\Delta & =28 G(9,3)+150 G(7,5)+168 G(5,7)-\frac{5197}{691} G(12)
\end{aligned}
$$

(2) q-analogues - Questions

Let us answer the questions we had:

Questions

- What about the shuffle product? shuffle = conjugation + harmonic + conjugation
- Iterated integrals? (Medina - Ebrahimi-Fard - Manchon / Takeyama): Iterated Jackson integrals, Rota-Baxter Operators, q-Multiple Polylogarithm
- What are the relations? Conjecturally conjugation + harmonic product
- Dimension? (B.-Kühn / Okounkov) There exist analogues of the Zagier conjecture and the Broadhurst-Kreimer conjecture for \mathcal{Z}_{q}
- Good choice of polynomials P_{i} ? Depends: for conjugation: ζ_{q}^{SZ}, for $q \frac{d}{d q}: g$, for classical duality: $\zeta_{q}^{B Z}$, "correct objects": Combinatorial MES
- Why the condition $\operatorname{deg}\left(P_{j}\right) \leq k_{j}$? This ensures that we can write elements as "polynomials in partitions".

(4) Functions on partitions - Overview

- partition of $n: \lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{l} \geq 1$ and $n=|\lambda|:=\lambda_{1}+\cdots+\lambda_{l}$.
- \mathcal{P} : the set of all partitions.
- $\mathbb{Q}^{\mathcal{P}}$: Set of all functions $\mathcal{P} \rightarrow \mathbb{Q}$.

To a function $f: \mathcal{P} \rightarrow \mathbb{Q}$, we associate

- a q-series $\langle f\rangle_{q} \in \mathbb{Q} \llbracket q \rrbracket$
- a degree $\operatorname{deg}(f) \in \mathbb{R}$
- a degree limit $Z^{\text {deg }}(f) \in \mathbb{R}$
in such a way that asymptotically for real q

$$
(1-q)^{\operatorname{deg}(f)}\langle f\rangle_{q}=\mathrm{Z}^{\operatorname{deg}}(f)+O(1-q)
$$

Further, we introduce a subspace $\mathbb{P} \subset \mathbb{Q}^{\mathcal{P}}$ such that for all $f \in \mathbb{P}$ we have $\langle f\rangle_{q} \in \mathcal{Z}_{q}$.
H. Bachmann, J.-W. van Ittersum

Partitions, Multiple Zeta Values and the q-bracket
Selecta Math. 30:3 (2024).

(4) Functions on partitions - q-bracket

Definition (Bloch-Okounkov, 2000)

For $f: \mathcal{P} \rightarrow \mathbb{Q}$ define the q-bracket by

$$
\langle f\rangle_{q}:=\frac{\sum_{\lambda \in \mathcal{P}} f(\lambda) q^{|\lambda|}}{\sum_{\lambda \in \mathcal{P}} q^{|\lambda|}} \in \mathbb{Q} \llbracket q \rrbracket .
$$

In case $f(\lambda)$ has at most polynomial growth in $|\lambda|$, its q-bracket is holomorphic for $|q|<1$.
Notice that the denominator is given by $\sum_{\lambda \in \mathcal{P}} q^{|\lambda|}=\prod_{n \geq 1} \frac{1}{1-q^{n}}=(q ; q)_{\infty}^{-1}$.
Example Consider the function $f(\lambda)=|\lambda|$. Then we have

$$
\langle f\rangle_{q}=\frac{\sum_{\lambda \in \mathcal{P}}|\lambda| q^{|\lambda|}}{\sum_{\lambda \in \mathcal{P}} q^{|\lambda|}}=q \frac{d}{d q} \log \left(\prod_{n \geq 1} \frac{1}{1-q^{n}}\right)=\sum_{m, n \geq 1} m q^{m n}=\sum_{n \geq 1} \sigma_{1}(n) q^{n}=g(2)
$$

(4) Functions on partitions - Shifted symmetric functions

Definition

The algebra of shifted symmetric functions is $\Lambda^{*}=\mathbb{Q}\left[Q_{2}, Q_{3}, \ldots\right]$, where $Q_{k}: \mathcal{P} \rightarrow \mathbb{Q}$ is given by

$$
Q_{k}(\lambda):=\beta_{k}+\frac{1}{(k-1)!} \sum_{i=1}^{\infty}\left(\left(\lambda_{i}-i+\frac{1}{2}\right)^{k-1}-\left(-i+\frac{1}{2}\right)^{k-1}\right),
$$

where $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and $\beta_{k}=\left(\frac{1}{2^{k-1}}-1\right) \frac{B_{k}}{k!}$ with B_{k} the k-th Bernoulli number.

Theorem (Bloch-Okounkov (2000))

For any $f \in \Lambda^{*}$ the q-series $\langle f\rangle_{q}$ is a quasimodular form.

(4) Functions on partitions-Polynomial functions

$r_{m}(\lambda)$: the number of times m occurs as a part in the partition λ.

Definition (B.-van-Ittersum, 2024)

The space of polynomial functions on partitions \mathbb{P} is the image of

$$
\Psi: \bigoplus_{n \geq 0} \mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \rightarrow \mathbb{Q}^{\mathcal{P}}
$$

where Ψ maps the polynomial $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ to

$$
\lambda \mapsto \sum_{m_{1}>\ldots>m_{n}>0} \sum_{r_{1}=1}^{r_{m_{1}}(\lambda)} \cdots \sum_{r_{n}=1}^{r_{m_{n}}(\lambda)} p\left(m_{1}, \ldots, m_{n}, r_{1}, \ldots, r_{n}\right) .
$$

Example The function $f=\Psi\left(x_{1}\right)$ is given by

$$
f(\lambda)=\sum_{m>0} \sum_{r=1}^{r_{m}(\lambda)} m=\sum_{m>0} r_{m}(\lambda) m=|\lambda| .
$$

(4) Functions on partitions-Polynomial functions

$r_{m}(\lambda)$: the number of times m occurs as a part in the partition λ.
Definition (B.-van-Ittersum, 2024)
The space of polynomial functions on partitions \mathbb{P} is the image of

$$
\Psi: \bigoplus_{n \geq 0} \mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \rightarrow \mathbb{Q}^{\mathcal{P}}
$$

where Ψ maps the polynomial $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ to

$$
\lambda \mapsto \sum_{m_{1}>\ldots>m_{n}>0} \sum_{r_{1}=1}^{r_{m_{1}}(\lambda)} \cdots \sum_{r_{n}=1}^{r_{m_{n}}(\lambda)} p\left(m_{1}, \ldots, m_{n}, r_{1}, \ldots, r_{n}\right)
$$

Theorem (B.-van-Ittersum (2024))

- We have $\Lambda^{*} \subsetneq \mathbb{M}:=\left\{f \in \mathbb{P} \mid\langle f\rangle_{q}\right.$ is quasi-modular $\} \subsetneq \mathbb{P}$.
- For any $f \in \mathbb{P}$ we have $\langle f\rangle_{q} \in \mathcal{Z}_{q}$. (and any element in \mathcal{Z}_{q} arises in this way)

(4) Functions on partitions - g as the q-bracket of a polynomial function

Definition

For $\mathcal{F}=\left\{f_{k}\right\}_{k=1}^{\infty}$ with $f_{k} \in \mathbb{Q}[x]$ and $k_{i} \geq 1, d_{i} \geq 0$ define the following element in \mathbb{P}

$$
\begin{aligned}
P_{\mathcal{F}}\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}}: & : \mathcal{P} \longrightarrow \mathbb{Q} \\
& \lambda \longmapsto \sum_{m_{1}>\cdots>m_{r}>0} \prod_{j=1}^{r} m_{j}^{d_{j}} f_{k_{j}}\left(r_{m_{j}}(\lambda)\right) .
\end{aligned}
$$

Example For $\mathrm{s}=\left\{f_{k}\right\}_{k=1}^{\infty}$, with $f_{k}(x)-f_{k}(x-1)=\frac{1}{(k-1)!} x^{k-1}$ and $f_{k}(0)=0$ we get

$$
\left\langle P_{\mathrm{s}}\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}}\right\rangle_{q}=\sum_{\substack{m_{1}>\ldots>m_{r}>0 \\ n_{1}, \ldots, n_{r}>0}} \prod_{j=1}^{r} m_{j}^{d_{j}} \frac{n_{j}^{k_{j}-1}}{\left(k_{j}-1\right)!} q^{m_{j} n_{j}}=g\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}}
$$

(4) Functions on partitions-degree \& degree limit

Definition

For $f \in \mathbb{Q}^{\mathcal{P}}$ we define the

- degree by

$$
\operatorname{deg}(f)=\inf _{a \in \mathbb{R}}\left\{\lim _{q \rightarrow 1}(1-q)^{a}\langle f\rangle_{q} \text { converges }\right\} .
$$

- degree limit $Z^{\operatorname{deg}}(f) \in \mathbb{R} \cup\{ \pm \infty\}$ by

$$
\lim _{q \rightarrow 1}(1-q)^{\operatorname{deg}(f)}\langle f\rangle_{q}
$$

whenever it exists

Example Consider the function $f(\lambda)=|\lambda|$. Then we have $\operatorname{deg}(f)=2$ and

$$
\mathrm{Z}^{\mathrm{deg}}(f)=\lim _{q \rightarrow 1}(1-q)^{2}\langle f\rangle_{q}=\lim _{q \rightarrow 1}(1-q)^{2} g(2)=\zeta(2)
$$

(4) Functions on partitions-degree of polynomial functions

Theorem (B.-van-Ittersum, 2024)

Given $r \geq 1$ and $d_{i}, l_{i} \in \mathbb{Z}_{\geq 0}$ for $i=1, \ldots, r$, let $f=\Psi\left(\prod_{i=1}^{r} x_{i}^{d_{i}} y_{i}^{l_{i}}\right) \in \mathcal{P}$. Then,

$$
\operatorname{deg}(f)=\max _{j \in\{0, \ldots, r\}}\left\{\sum_{i \leq j}\left(d_{i}+1\right)+\sum_{i>j}\left(l_{i}+1\right)\right\}
$$

Moreover, if the maximum is attained for a unique value of j, then $\mathrm{Z}^{\operatorname{deg}}(f) \in \mathcal{Z}_{\leq \operatorname{deg}(f)}$.

Corollary

For $k_{1} \geq 2, k_{2}, \ldots, k_{r} \geq 1$ and $d_{1}, \ldots, d_{s-1} \geq 0, d_{s} \geq 1$ we have

$$
\lim _{q \rightarrow 1}(1-q)^{k_{1}+\cdots+k_{r}+d_{1}+\cdots+d_{s}} g\binom{1, \ldots, 1, k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{s}, 0, \ldots, 0}=\xi\left(d_{1}, \ldots, d_{s}\right) \zeta\left(k_{1}, \ldots, k_{r}\right)
$$

where we call $\xi\left(d_{1}, \ldots, d_{s}\right)$ conjugated multiple zeta values.

(4) Functions on partitions - Conjugated MZV

Definition (B.-van-Ittersum, 2024)
For $d_{1}, \ldots, d_{r-1} \geq 0, d_{r} \geq 1$, define the conjugated multiple zeta value by

$$
\xi\left(d_{1}, \ldots, d_{r}\right):=\sum_{0<m_{1}<\ldots<m_{r}} \frac{1}{m_{1} \cdots m_{r}} \Omega\left[\prod_{i=1}^{r}\left(\frac{1}{m_{i}}+\ldots+\frac{1}{m_{r}}\right)^{d_{i}}\right]
$$

where $\Omega: \mathbb{Q}\left[m_{1}^{-1}, \ldots, m_{r}^{-1}\right] \rightarrow \mathbb{Q}\left[m_{1}^{-1}, \ldots, m_{r}^{-1}\right]$ is the linear mapping

$$
\Omega\left[\frac{1}{m_{1}^{l_{1}} \cdots m_{r}^{l_{r}}}\right]:=\frac{l_{1}!\cdots l_{r}!}{m_{1}^{l_{1}} \cdots m_{r}^{l_{r}}}
$$

These satisfy the index-shuffle product formula, e.g.,

$$
\xi\left(d_{1}\right) \xi\left(d_{2}\right)=\xi\left(d_{1}, d_{2}\right)+\xi\left(d_{2}, d_{1}\right)
$$

for $d_{1}, d_{2} \geq 1$.

(4) Functions on partitions - u-bracket

Definition (van-Ittersum, 2021)
The vector space isomorphism $\left\rangle_{\vec{u}}: \mathbb{Q}^{\mathcal{P}} \rightarrow \mathbb{Q} \llbracket u_{1}, u_{2}, \ldots \rrbracket\right.$ is given by

$$
\langle f\rangle_{\vec{u}}:=\frac{\sum_{\lambda \in \mathcal{P}} f(\lambda) u_{\lambda}}{\sum_{\lambda \in \mathcal{P}} u_{\lambda}} \quad\left(u_{\lambda}=u_{\lambda_{1}} u_{\lambda_{2}} \cdots, u_{0}=1\right)
$$

For $f \in \mathbb{Q}^{\mathcal{P}}$ we call $\langle f\rangle_{\vec{u}}$ the \vec{u}-bracket of f.
Note that the \vec{u}-bracket reduces to the q-bracket by specializing $u_{i}=q^{i}$ for all integers i.

(4) Functions on partitions - Double shuffle relations for functions on partitions

Definition

Given $F, G \in \mathbb{Q} \llbracket u_{1}, u_{2}, \ldots \rrbracket$, we define

- the harmonic product as the multiplication $F \circledast G=F G$.
- the conjugation of $F=\sum_{\lambda \in \mathcal{P}} a_{\lambda} u_{\lambda}$ by $\iota(F)=\sum_{\lambda \in \mathcal{P}} a_{\lambda} u_{\lambda^{\prime}}$.
- the shuffle product as the multiplication $F \mathbb{\otimes} G=\iota(\iota(F) \circledast \iota(G))$.
- the derivative of $F=\sum_{\lambda \in \mathcal{P}} a_{\lambda} u_{\lambda}$ by $D F=\sum_{\lambda \in \mathcal{P}} a_{\lambda}|\lambda| u_{\lambda}$.

We extend these definitions to $\mathbb{Q}^{\mathcal{P}}$ by the isomorphism given by the \vec{u}-bracket.

Proposition (Double shuffle relations for general functions on partitions)
For all $f, g \in \mathbb{Q}^{\mathcal{P}}$ we have

$$
\langle\iota(f)\rangle_{q}=\langle f\rangle_{q}, \quad\langle f \circledast g\rangle_{q}=\langle f\rangle_{q}\langle g\rangle_{q}=\langle f \oplus g\rangle_{q} \quad \text { and } \quad q \frac{\partial}{\partial q}\langle f\rangle_{q}=\langle D f\rangle_{q} .
$$

Question: Applications to other (modular) objects than q-analogues?

$$
\underset{\text { ed symmetric }}{\Lambda^{*}} \subset \mathbb{M} \xrightarrow[\text { quasimodular forms }]{ } \tilde{\mathbb{Q}}[\zeta(2)]
$$

shifted symmetric

functions

