Introduction to SageMath \& Algebraic Number Theory

Henrik Bachmann

4th February 2022
www.henrikbachmann.com

Based on the lecture notes available at www. henrikbachmann.com/algnt_2021.html
There you can also find a Jupyter Sage notebook with example code

Goal of these slides

Goal: Review the content of the course "Algebraic Number Theory" and do some examples in Sage (sagemath.org \& cocalc.com).

Overview of what we did:
(1) Introduction \& Basics of algebra
(2) Integrality
(3) Trace, Norm, and Discriminant
(Dedekind domains
(c) Lattices
(6) Minkowski Theory

- The class number
(8) Fermat's Last Theorem
(0) Dirichlet's Unit Theorem
(0) Extensions of Dedekind domains

(1) Introduction \& Basics of algebra-Prime as a sum of two squares

Theorem (Theorem 1.3)

A prime $p \geq 3$ can be written as a sum of two squares if and only if $p \equiv 1 \bmod 4$.
For example $13=2^{3}+3^{2}=(2-3 i)(2+3 i)$.
In Sage we create the number field $K=\mathbb{Q}(i)$ and its ring of integers $\mathcal{O}_{K}=\mathbb{Z}[i]$ by using the minimal polynomial $x^{2}+1$ of i :
K. $\langle\mathrm{y}\rangle=$ NumberField ($\mathrm{x}^{\wedge} 2+1$) ;

0 = K.ring_of_integers();
The variable y now is a primitive element (In this case $y= \pm i$) of K. To factor 13 we consider the ideal (13):

+ I=O.ideal (13);
$=$ I.factor ()
Output:
(Fractional ideal (-3*y - 2)) * (Fractional ideal (2*y + 3))
Which gives $(13)=(-3 i-2)(2 i+3)=(2+3 i)(2-3 i)$.

(1) Introduction \& Basics of algebra - Prime as a sum of two squares

To deal with primes in Sage one can use the following code, which gives the $550+1$-th prime
1 $\mathrm{P}=$ Primes ()
${ }_{2}$ P. unrank (550)
Output:
4001

Naive way of finding the representation as a sum of two squares (just to see some code)
$\mathrm{p}=4001$
2 for a in range(p):
for b in range (1,a+1):
if $a-2+b \sim 2==p$:
print (a," ",b)
Output:
4940
Which means $4001=49^{2}+40^{2}$.

(1) Introduction \& Basics of algebra - Factorization in $\mathbb{Z}[\sqrt{-5}]$

Exercise 5

We saw that in $R=\mathbb{Z}[\sqrt{-5}]$ we have the non-unique factorization of 6 into irreducible elements as
$6=2 \cdot 3=(1+\sqrt{-5}) \cdot(1-\sqrt{-5})$. Find prime ideals $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \mathfrak{p}_{3} \subset R$ such that the ideals generated by these elements can be written as

$$
(2)=\mathfrak{p}_{1}^{2}, \quad(3)=\mathfrak{p}_{2} \mathfrak{p}_{3}, \quad(1+\sqrt{-5})=\mathfrak{p}_{1} \mathfrak{p}_{2}, \quad(1-\sqrt{-5})=\mathfrak{p}_{1} \mathfrak{p}_{3}
$$

and conclude $(6)=\mathfrak{p}_{1}^{2} \mathfrak{p}_{2} \mathfrak{p}_{3}$.
We will use Sage to guess the ideals $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \mathfrak{p}_{3}$:

```
1 K.<y> = NumberField(x^2+5); O = K.ring_of_integers();
2 I=0.ideal(6);
3 I.factor()
    Output:
1 (Fractional ideal (2, y + 1)) ~ 2 * (Fractional ideal (3, y + 1)) * (
        Fractional ideal (3, y + 2))
(y=\pm\sqrt{}{-5}
```


(1) Introduction \& Basics of algebra - Factorization in $\mathbb{Z}[\sqrt{-5}]$

Want $(6)=\mathfrak{p}_{1}^{2} \mathfrak{p}_{2} \mathfrak{p}_{3}$ with $(2)=\mathfrak{p}_{1}^{2},(3)=\mathfrak{p}_{2} \mathfrak{p}_{3},(1+\sqrt{-5})=\mathfrak{p}_{1} \mathfrak{p}_{2},(1-\sqrt{-5})=\mathfrak{p}_{1} \mathfrak{p}_{3}$.
$I=0$. ideal (6);
2 I.factor ()
Output:
1 (Fractional ideal (2, y + 1)) ~ 2 * (Fractional ideal (3, y +1)) * (Fractional ideal (3, y +2))

Check if the guess is correct:
1 p1 = 0.ideal (2,y+1); p2=0.ideal (3,y+1); p3=0.ideal (3,y+2);
2 print("p1~2 = ",p1~2)
3 print ("p2*p3 = ", p2*p3)
4 print ("p1*p2 = ", p1*p2)
5 print("p1*p3 = ",p1*p3)
Output:

+ $\mathrm{p} 1^{\sim} 2=$ Fractional ideal (2)
2 p2*p3 = Fractional ideal (3)
${ }^{3} \mathrm{p} 1 * \mathrm{p} 2=$ Fractional ideal $(\mathrm{y}+1)$
${ }_{4} \mathrm{p} 1 * \mathrm{p} 3=$ Fractional ideal $(-y+1)$

(2) Integrality - Recall some notations

Definition (Definition 2.1 \& 2.6)

(1) An algebraic number field K is a finite field extension of \mathbb{Q}, i.e. $\mathbb{Q} \subset K$ and $\operatorname{dim}_{\mathbb{Q}} K<\infty$. The elements of K are called algebraic numbers.
(1) A number $x \in K$ of an algebraic number field is called an algebraic integer if it is the zero of a monic polynomial with integer coefficients, i.e. there exist some $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ with

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0
$$

We denote the set of all algebraic integers of a number field K by

$$
\mathcal{O}_{K}=\{x \in K \mid x \text { algebraic integer }\}
$$

This is called the ring of integers of \boldsymbol{K}.
(1) \mathcal{O}_{K} is the integral closure of \mathbb{Z} in K.

(3) Trace, Norm, and Discriminant-Definition

Definition (Definition 3.4)

Let L / K be a finite field extension with $[L: K]=n$. For $x \in L$ define the K-linear map on the n-dimensional K-vector space L by

$$
\begin{aligned}
T_{x}: L & \longrightarrow L \\
& \alpha \longmapsto x \cdot \alpha .
\end{aligned}
$$

Then we define the trace and norm of x by

$$
\operatorname{Tr}_{L / K}(x)=\operatorname{Tr}\left(T_{x}\right), \quad \mathrm{N}_{L / K}(x)=\operatorname{det}\left(T_{x}\right)
$$

For $K=\mathbb{Q}, L=\mathbb{Q}(i)$, and $m=a+b i \in L$ we have $\operatorname{Tr}_{L / K}(m)=2 a$ and $\mathrm{N}_{L / K}(m)=a^{2}+b^{2}$.
1 K. $\langle\mathrm{y}\rangle=$ NumberField ($\mathrm{x}^{\sim} 2+1$)
2 $\mathrm{m}=5+4 * \mathrm{y}$
з print("The element ",m," has norm ",m.norm()," and trace ",m.trace()) Output:
The element $4 * y+5$ has norm 41 and trace 10

(3) Trace, Norm, and Discriminant-Calculation of Norm \& Trace

Proposition (Proposition 3.6)

Let L / K be a finite field extension with $[L: K]=n$ and $\operatorname{char}(K)=0$ or $|K|<\infty$. If $\sigma_{i}: L \rightarrow \bar{K}$ for $i=1, \ldots, n$ denotes the n embeddings of L in \bar{K}, then for $x \in L$ we have

$$
\begin{aligned}
f_{x}(\lambda) & =\prod_{i=1}^{n}\left(\lambda-\sigma_{i}(x)\right) \\
\operatorname{Tr}_{L / K}(x) & =\sum_{i=1}^{n} \sigma_{i}(x) \\
\mathrm{N}_{L / K}(x) & =\prod_{i=1}^{n} \sigma_{i}(x)
\end{aligned}
$$

(Here $f_{x}(\lambda)$ is the characteristic polynomial of T_{x})

(3) Trace, Norm, and Discriminant - Calculation of Norm \& Trace

```
Let }f(x)=\mp@subsup{x}{}{4}-2\mp@subsup{x}{}{2}+x+1=\mp@subsup{\prod}{j=1}{4}(x-\mp@subsup{0}{i}{})\mathrm{ and }K=\mathbb{Q}(0)\cong\mathbb{Q}[X]/f(X)
f(x)=x^4-2*x^2+x+1
2 for r in f.roots():
    print(r[0].n())
Output:
1 -1.49021612009995
= -0.524888598656405
з 1.00755235937818-0.513115795597015*I
4 1.00755235937818 + 0.513115795597015*I
1 K.<y> = NumberField(f(x))
2 print("K is a",K,"\nThe degree is ", K.degree())
3 [r,s]=K.signature()
4 print("K has",r," real embeddings and ",s, "pair of complex embeddings")
Output:
1 K is a Number Field in y with defining polynomial x^4 - 2*x^2 + x + 1
2 The degree is 4
3 K has 2 real embeddings and 1 pair of complex embeddings
```


(3) Trace, Norm, and Discriminant - Calculation of Norm \& Trace

$$
\text { Let } f(x)=x^{4}-2 x^{2}+x+1=\prod_{j=1}^{4}\left(x-\theta_{i}\right) \text { and } K=\mathbb{Q}(\theta) \cong \mathbb{Q}[X] / f(X) \text {. }
$$

We calculate the norm and trace of the element $a=\theta^{2}-3$:

```
# Using the built-in functions for norm and trace
a=y^2-3
print(a, " has norm ", a.norm(), " and trace ", a.trace())
Output:
y^2 - 3 has norm 13 and trace -8
```

\# Calculating the norm\&trace of y-2-3 by using the roots of f
$p(x)=x^{\sim} 2-3$
norm=1
trace $=0$
for r in f.roots():
norm*=p(r[0])
trace+=p(r[0])
print (a, " has norm ", norm.n(), " and trace ", trace.n())

Output:
$y^{\wedge} 2-3$ has norm 13.0000000000000 and trace -8.00000000000000

(3) Trace, Norm, and Discriminant-Calculation of Norm \& Trace

$$
\text { Let } f(x)=x^{4}-2 x^{2}+x+1=\prod_{j=1}^{4}\left(x-\theta_{i}\right) \text { and } K=\mathbb{Q}(\theta) \cong \mathbb{Q}[X] / f(X) \text {. }
$$

We can also calculate the norm and trace of the element $a=\theta^{2}-3$ by using the embeddings created by sage:

```
# Calculating the norm&trace of y^2-3 by using the C-embeddings
embeddings=K.embeddings(CC);
a=y - 2-3
norm=1
trace=0
for e in embeddings:
    norm*=e(a)
    trace+=e(a)
print(a, " has norm ", norm.n(), " and trace ", trace.n())
Output:
y^2 - 3 has norm 13.0000000000000 + 8.88178419700125e-16*I and trace
    -8.00000000000000
```


(3) Trace, Norm, and Discriminant-Discriminant: Definition

Definition (Definition 3.8)

The discriminant of a basis $\alpha_{1}, \ldots, \alpha_{n}$ of L is defined by

$$
d\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right)^{2}
$$

Definition (Definition 3.14)

An integral basis of B over A is a system of elements $\omega_{1}, \ldots, \omega_{n} \in B$, such that each $b \in B$ can be written uniquely as a linear combination $b=a_{1} \omega_{1}+\cdots+a_{n} \omega_{n}$, with $a_{1}, \ldots, a_{n} \in A$.

Definition (Definition 3.18)

The discriminant of the number field \boldsymbol{K} is defined by

$$
d_{K}=d\left(\omega_{1}, \ldots, \omega_{n}\right)
$$

where $\omega_{1}, \ldots, \omega_{n}$ is an integral basis of K / \mathbb{Q}. (This always exists)

(3) Trace, Norm, and Discriminant-Calculating the discriminant

```
Let }g(x)=\mp@subsup{x}{}{3}-\mp@subsup{x}{}{2}-2x-8=\mp@subsup{\prod}{j=1}{3}(x-\mp@subsup{0}{i}{})\mathrm{ and }K=\mathbb{Q}(0)\cong\mathbb{Q}[X]/g(X)
g(x)=x~3-x^2-2x-8
K.<y> = NumberField(g(x))
4 print("K is a",K,"\nThe degree is ", K.degree())
5 [r,s]=K.signature()
print("K has",r," real embeddings and ",s, "pair of complex embeddings")
# Using the built in function for the discriminant & integral basis
print("discriminant: ", K.discriminant())
print("integral basis: ",K.integral_basis())
Output:
K is a Number Field in \(y\) with defining polynomial \(x^{\wedge} 3-x^{\wedge} 2-2 * x-8\)
The degree is 3
K has 1 real embeddings and 1 pair of complex embeddings
discriminant: -503
integral basis: [1, 1/2*y^2 + 1/2*y, y^2]
```

3

(3) Trace, Norm, and Discriminant-Calculating the discriminant

For an integral basis $\omega_{1}, \ldots, \omega_{n}$ the discriminant of K is

$$
d_{K}=d\left(\omega_{1}, \ldots, \omega_{n}\right)=\operatorname{det}\left(\sigma_{i}\left(\omega_{j}\right)\right)^{2} .
$$

```
# Calculating the discriminant by using an integral basis
2 B=K.integral_basis()
embeddings=K.embeddings(CC)
n=K.degree();
mat=matrix.zero(CC,n,n)
6
7 for i in range(n):
8 for j in range(n):
            mat[i,j]=embeddings[i](B[j])
print(det(mat) - 2)
```

Output:
-503.000000000000

(4) Dedekind domains - Definition \& Unique factorization of ideals

Definition (Definition 4.2)

A domain R is called a Dedekind domain if

(-) R is noetherian,
(1) R is integrally closed,
(1) every non-zero prime ideal in R is maximal.

Proposition (Proposition 4.3)

The ring of integers \mathcal{O}_{K} of an algebraic number field K is a Dedekind domain.

Theorem (Theorem 4.4)

Let \mathcal{O} be a Dedekind domain. Every ideal \mathfrak{a} of \mathcal{O}, which differs from (0) and (1), admits a factorization

$$
\mathfrak{a}=\mathfrak{p}_{1} \ldots \mathfrak{p}_{r}
$$

into nonzero prime ideals \mathfrak{p}_{i} of \mathcal{O}, which is unique up to the order of the factors.

(4) Dedekind domains - Fractional ideals

Definition (Definition 4.8)

Let \mathcal{O} be a Dedekind domain with field of fractions $K=\operatorname{Frac} \mathcal{O}$.
(1) A fractional ideal of K is a finitely generated \mathcal{O}-submodule $\mathfrak{a} \neq\{0\}$ of K.
(1) Fractional ideals in \mathcal{O} are called integral ideals of K.
(1) For $a \in K^{\times}$the module $(a):=a \mathcal{O}$ is a fractional ideal, called a fractional principal ideal.

Proposition (Proposition 4.10)

The fractional ideals form an abelian group, the ideal group J_{K} of K. The identity is $(1)=\mathcal{O}$, and the inverse of a fractional ideal \mathfrak{a} is $\mathfrak{a}^{-1}=\{x \in K \mid x \mathfrak{a} \subset \mathcal{O}\}$.

Definition (Definition 4.13)

(1) By P_{K} we denote the subgroup of J_{K} generated by all fractional principal ideals $(a)=a \mathcal{O}$ with $a \in K^{\times}$.
(1) The quotient $\mathrm{Cl}_{K}=J_{K} / P_{K}$ is called the (ideal) class group of K.

(5) Lattices-Minkowski's theorem

Let V be an euclidean vector space. A discrete subgroup $\Gamma \subset V$ is called a lattice (Def. 5.1 \& Prop. 5.3)

Definition (Definition 5.6)

A subset $X \subset V$ is called
(1) centrally symmetric if for all $x \in X$ we also have $-x \in X$.
(1) convex if for all $x, y \in X$ the line segment $\{t y+(1-t) x \mid 0 \leq t \leq 1\}$ is contained in X.

Theorem (Minkowski's lattice point theorem, Theorem 5.7)

Let Γ be a complete lattice in the n-dimensional euclidean vector space V and X a centrally symmetric, convex subset of V. Suppose that

$$
\operatorname{vol}(X)>2^{n} \operatorname{vol}(\Gamma)
$$

Then X contains at least one nonzero lattice point $\gamma \in \Gamma$.

(6) Minkowski Theory - Minkowski space

Consider all embeddings $\tau_{i}: K \rightarrow \mathbb{C}$ at the same time and define the map

$$
\begin{aligned}
j: K \longrightarrow K_{\mathbb{C}} & :=\prod_{\tau} \mathbb{C} \\
a & \longmapsto j(a)
\end{aligned}=(\tau(a))_{\tau}=:\left(a_{\tau}\right)_{\tau} .
$$

Denote by F the complex conjugation acting on $K_{\mathbb{C}}$ and define $\langle x, y\rangle=\sum_{\tau} x_{\tau} \overline{y_{\tau}}$ for $x, y \in K_{\mathbb{C}}$.

Definition (Definition 6.1)

Let $K_{\mathbb{R}}$ denote the F-invariant subspace of $K_{\mathbb{C}}$, i.e.

$$
K_{\mathbb{R}}=\left\{z \in K_{\mathbb{C}} \quad \bmod z_{\bar{\tau}}=\overline{z_{\tau}}\right\}
$$

The restriction of \langle,$\rangle on K_{\mathbb{R}}$ gives a scalar product $\langle\rangle:, K_{\mathbb{R}} \times K_{\mathbb{R}} \rightarrow \mathbb{R}$ on the \mathbb{R}-vector space $K_{\mathbb{R}}$. The euclidean vector space $\left(K_{\mathbb{R}},\langle\rangle,\right)$ is called Minkowski space.

(6) Minkowski Theory - Useful theorem

Proposition (Proposition 6.3)

If $\mathfrak{a} \neq 0$ is an ideal of \mathcal{O}_{K}, then $\Gamma=j(\mathfrak{a})$ is a complete lattice in $K_{\mathbb{R}}$. Its fundamental mesh has volume

$$
\left.\operatorname{vol}(\Gamma)=\sqrt{\left|d_{K}\right|} \mid \mathcal{O}_{K}: \mathfrak{a}\right] .
$$

Theorem (Theorem 6.4)

Let $\mathfrak{a} \neq(0)$ be an ideal of \mathcal{O}_{K}, and let $c_{\tau}>0$ be real numbers for each embedding $\tau \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$, such that $c_{\tau}=c_{\bar{\tau}}$ and

$$
\prod_{\tau} c_{\tau}>\left(\frac{2}{\pi}\right)^{s} \sqrt{\left|d_{K}\right|}\left[\mathcal{O}_{K}: \mathfrak{a}\right]
$$

Then there exists an $a \in \mathfrak{a}, a \neq 0$ with $|\tau(a)|<c_{\tau}$ for all $\tau \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$.

(7) The class number - Absolute norm \& class number

Definition (Definition 7.1)

Let $\mathfrak{a} \neq(0)$ be an ideal in \mathcal{O}_{K}. Then the absolute norm of \mathfrak{a} is

$$
\mathfrak{N}(\mathfrak{a})=\left[\mathcal{O}_{K}: \mathfrak{a}\right]=\left|\mathcal{O}_{K} / \mathfrak{a}\right| .
$$

Lemma (Lemma 7.5)

In every ideal $\mathfrak{a} \neq(0)$ of \mathcal{O}_{K} there exists an $a \in \mathfrak{a}$, $a \neq 0$, with

$$
\left|\mathrm{N}_{K / \mathbb{Q}}(a)\right| \leq\left(\frac{2}{\pi}\right)^{2} \sqrt{\left|d_{K}\right|} \mathfrak{N}(\mathfrak{a})
$$

Theorem (Theorem 7.6)

The ideal class group $\mathrm{Cl}_{K}=J_{K} / P_{K}$ is finite. Its order $h_{k}=\left|\mathrm{Cl}_{K}\right|$ is called the class number of K.

(7) The class number - Calculation

Let $K=\mathbb{Q}(\sqrt{-5})$ then $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-5}]$. The class number is $h_{K}=2$ and we can compute the classes as follows:

```
K.<y> = NumberField(x^2+5)
2 CK = K.class_group();
3 print(CK)
4 print("generators: ",CK.gen())
5 print("class number: ",K.class_number())
Output:
1 Class group of order 2 with structure C2 of Number Field in y with
    defining polynomial x^2 + 5
2 generators: Fractional ideal class (2, y + 1)
3 class number: 2
```

The class number - Dedekind zeta function \& Analytic class number formula

Definition (Definition 7.9)

The Dedekind zeta function of a number field K is defined for $z \in \mathbb{C}$ with $\operatorname{Re}(z)>1$ by

$$
\zeta_{K}(z)=\sum_{(0) \neq \mathfrak{a} \subset \mathcal{O}_{K}} \frac{1}{\mathfrak{N}(\mathfrak{a})^{z}} .
$$

Theorem (Analytic class number formula, Theorem 7.11)
The residue of ζ_{K} at $z=1$ is given by

$$
\lim _{z \rightarrow 1}(z-1) \zeta_{K}(z)=\frac{2^{r}(2 \pi)^{s} h_{K} R_{K}}{\omega_{K} \sqrt{\mid d_{K}}}
$$

where R_{K} is the regulator of K and ω_{K} is the number of roots of unity in K.

(7) The class number - Analytic class number formula for $\mathbb{Q}(\sqrt{-5})$

$$
\lim _{z \rightarrow 1}(z-1) \zeta_{K}(z)=\frac{2^{r}(2 \pi)^{s} h_{K} R_{K}}{\omega_{K} \sqrt{\mid d_{K}}}
$$

1 \# Analytic class number formula
2 K. $\langle y\rangle=$ NumberField ($x^{\sim} 2+5$)
${ }_{3} \mathrm{DZ}=$ K.zeta_function()
${ }_{4}[\mathrm{r}, \mathrm{s}]=\mathrm{K}$. signature ()
${ }_{5}$ RK=K.regulator ()
6 wK=K.zeta_order ()
7 dK=K.discriminant()
\& hK=K.class_number ()

- print("RHS:", 2^r*(2*pi.n()) ^s*hK*RK/(wK*sqrt(abs(dK.n()))))

10 print("LHS: ", (0.9999999-1)*DZ (0.9999999))
Output:
1 RHS: 1.40496294620815
= LHS: 1.40496290972109

(8) Fermat's Last Theorem - Kummer's result

Recall that for $n \geq 1$ the Fermat equation is

$$
\begin{equation*}
x^{n}+y^{n}=z^{n} \tag{1}
\end{equation*}
$$

We are interest in non-trivial solutions $(x y z \neq 0)$ for (1) with $x, y, z \in \mathbb{Z}$.

Definition (Definition 8.2)

A prime p is called regular if p does not divide $h_{\mathbb{Q}\left(\zeta_{p}\right)}$.

Theorem (Kummer 1850, Theorem 8.3)

(1) If $n=p \geq 3$ is a regular prime then there are no non-trivial solutions to (1).
(1) A prime p is regular if and only if it does not divide the numerator of the Bernoulli numbers B_{k} for $k=2,4, \ldots, p-3$. Here the Bernoulli numbers B_{k} are defined by their exponential generating series

$$
\sum_{k \geq 0} \frac{B_{k}}{k!} X^{k}:=\frac{X}{e^{X}-1}
$$

(8) Fermat's Last Theorem - Regular primes

Definition (Definition 8.2)

A prime p is called regular if p does not divide $h_{\mathbb{Q}\left(\zeta_{p}\right)}$.

```
# Check if a prime is regular by using the definition
p=7
K.<y> = CyclotomicField(p)
classnumber = K.class_number()
print("class number: ", classnumber)
if classnumber % p != 0:
8 print(p, " is regular")
9 else:
    print(p, " is not regular")
Output:
class number: 1
7 is regular
```

6

Notice that this becomes really (!) slow for larger primes p.

(8) Fermat's Last Theorem-Regular primes with Kummer's criteria

Kummer's criteria: A prime p is regular if and only if it does not divide the numerator of the Bernoulli numbers B_{k} for $k=2,4, \ldots, p-3$.

```
# Using Kummer's criteria to check if a prime is regular
p=37
regular=True
for k in range(2,p-2):
    if k % 2 ==0 and bernoulli(k).numerator() % p == 0:
                regular=False
            break
if regular:
    print(p, " is regular")
else:
    print(p, " is not regular")
Output:
37 is not regular
```


(8) Fermat's Last Theorem-Regular primes with Kummer's criteria II

```
1 # Give all non-regular primes up to a given bound
2 P = Primes()
3
4 for n in range(30):
    p = P.unrank(n)
    regular=True
    for k in range(2,p-2):
        if k % 2 ==0 and bernoulli(k).numerator() % p == 0:
                regular=False
                break
    if not regular:
            print(p, " is not regular")
    Output:
    37 is not regular
2 59 is not regular
3 67 is not regular
4101 is not regular
5 103 is not regular
```


(9) Dirichlet's Unit Theorem - Statement

Denote by $\mu(K)$ the set of roots of unity contained in a number field K.

Theorem (Dirichlet's unit theorem, Theorem 9.4)

The unit group \mathcal{O}_{K}^{\times}is given by a direct product of the cyclic group $\mu(K)$ and a free abelian group of rank $r+s-1$, i.e.

$$
\mathcal{O}_{K}^{\times} \cong \mu(K) \oplus \mathbb{Z}^{r+s-1}
$$

This theorem implies that there exist units $\epsilon_{1}, \ldots, \epsilon_{t}$, with $t=r+s-1$, called the fundamental units, such that any unit $\epsilon \in \mathcal{O}_{K}^{\times}$can be written as

$$
\epsilon=\zeta \epsilon_{1}^{\nu_{1}} \cdots \epsilon_{t}^{\nu_{t}}
$$

with $\zeta \in \mu(K)$ and $\nu_{1}, \ldots, \nu_{t} \in \mathbb{Z}$.

(9) Dirichlet's Unit Theorem - Example

There exist units $\epsilon_{1}, \ldots, \epsilon_{t}$, with $t=r+s-1$, called the fundamental units, such that any unit $\epsilon \in \mathcal{O}_{K}^{\times}$ can be written as

$$
\epsilon=\zeta \epsilon_{1}^{\nu_{1}} \cdots \epsilon_{t}^{\nu_{t}}
$$

with $\zeta \in \mu(K)$ and $\nu_{1}, \ldots, \nu_{t} \in \mathbb{Z}$.
1 K. $\langle y\rangle=$ NumberField ($x^{\wedge} 2-7$)
2 UK = UnitGroup (K);
${ }^{3}$ print (UK);
${ }_{4}$ print("generators: ", UK.gens_values())
5 zeta=UK.gens () [0]
6 eps1=UK.gens () [1]
Output:

+ Unit group with structure $C 2 \mathrm{x}$ Z of Number Field in y with defining polynomial $x \sim 2-7$
2 generators: $[-1,3 * y-8]$
Here we see that $8+3 \sqrt{7}$ is the fundamental unit for $K=\mathbb{Q}(\sqrt{7})$.

(10) Extensions of Dedekind domains - Notations

Setup in this section:

- A : Dedekind domain,
- $K=\operatorname{Frac} A$,
- L / K : finite extension,

- \mathcal{O} : integral closure of A in L.

Proposition (Proposition 10.1 \& 10.2)

(1) \mathcal{O} is a Dedekind domain.
(1) Let \mathfrak{p} be a prime ideal of A then $\mathfrak{p O} \neq \mathcal{O}$.

A prime ideal $\mathfrak{p} \neq(0)$ of A decomposes in \mathcal{O} in a unique way into a product of prime ideals:

$$
\mathfrak{p O}=\mathfrak{P}_{1}^{e_{1}} \cdots \mathfrak{P}_{r}^{e_{r}} .
$$

(10) Extensions of Dedekind domains - Fundamental identity

A prime ideal $\mathfrak{p} \neq(0)$ of A decomposes in \mathcal{O} in a unique way into a product of prime ideals:

$$
\begin{equation*}
\mathfrak{p O}=\mathfrak{P}_{1}^{e_{1}} \cdots \mathfrak{P}_{r}^{e_{r}} . \tag{2}
\end{equation*}
$$

Definition (Definition 10.3)

(1) The exponent e_{i} in (2) is called the ramification index of \mathfrak{P}_{i} over \mathfrak{p}.
(1) The degree of the field extension

$$
f_{i}=\left[\mathcal{O} / \mathfrak{P}_{i}: A / \mathfrak{p}\right]
$$

is called the inertia degree of \mathfrak{P}_{i} over \mathfrak{p}.
Theorem (Fundamental identity, Definition 10.4)
We have

$$
\sum_{i=1}^{r} e_{i} f_{i}=n=[L: K]
$$

(10) Extensions of Dedekind domains - Example

```
    p\mathcal{O}=\mp@subsup{\mathfrak{P}}{1}{\mp@subsup{e}{1}{}}\cdots\mp@subsup{\mathfrak{P}}{r}{\mp@subsup{e}{r}{}},\quad\mp@subsup{e}{i}{}:\mathrm{ ramification index, }\quad\mp@subsup{f}{i}{}=[\mathcal{O}/\mp@subsup{\mathfrak{F}}{i}{}:A/\mathfrak{p}]:\mathrm{ inertia degree}
1 # Calculate the ramification indices and inertia degrees
2 K. <y> = NumberField(x ~ 2+1)
3 p=K.ideal(53)
4 fac=K.factor (p)
5 print("The ideals over ", p, " are:")
6 for P in fac:
    print(P[0], "with ramification index e =", P[1], " and inertia
    degree f =", P[0].residue_class_degree())
Output:
1 The ideals over Fractional ideal (53) are:
2 Fractional ideal ( \(-2 * y+7\) ) with ramification index e \(=1\) and inertia
    degree f = 1
з Fractional ideal ( \(2 *\) y +7 ) with ramification index e \(=1\) and inertia degree \(f=1\)
```


(10) Extensions of Dedekind domains - Ramification

Definition

Let $\mathfrak{p} \subset A$ be a prime ideal with the following factorization in \mathcal{O}

$$
\mathfrak{p O}=\mathfrak{P}_{1}^{e_{1}} \cdots \mathfrak{P}_{r}^{e_{r}} .
$$

(1) \mathfrak{p} is said to split completely (or totally split) in L, if $r=n=[L: K]$, i.e. $e_{i}=f_{i}=1$ for all $i=1, \ldots, r$.
(1) \mathfrak{p} is called nonsplit if $r=1$, i.e. there is just one prime ideal in \mathcal{O} over \mathfrak{p}.
(1) \mathfrak{P}_{i} is called unramified over A (or K) if $e_{i}=1$ and if the extension $\mathcal{O} / \mathfrak{P}_{i} / A / \mathfrak{p}$ is separable. Otherwise \mathfrak{P}_{i} is called ramified. If $e_{i}>1$ and $f_{i}=1$ then \mathfrak{P}_{i} is called totally ramified.
(0) \mathfrak{p} is called unramified if all \mathfrak{P}_{i} over \mathfrak{p} are unramified. Otherwise, \mathfrak{p} is called ramified. In particular, if \mathfrak{p} split completely then it is unramified.
(0) The extension L / K is called unramified if all prime ideals $\mathfrak{p} \subset A$ are unramified.

