Introduction to SageMath & Algebraic Number Theory

Henrik Bachmann

4th February 2022 www.henrikbachmann.com

Based on the lecture notes available at www.henrikbachmann.com/algnt_2021.html There you can also find a Jupyter Sage notebook with example code

Goal of these slides

Goal: Review the content of the course "Algebraic Number Theory" and do some examples in Sage (sagemath.org & cocalc.com).

Overview of what we did:

- Introduction & Basics of algebra
- Integrality
- Trace, Norm, and Discriminant
- Dedekind domains
- Lattices
- Minkowski Theory
- The class number
- Fermat's Last Theorem
- Oirichlet's Unit Theorem
- Extensions of Dedekind domains

Theorem (Theorem 1.3)

A prime $p \geq 3$ can be written as a sum of two squares if and only if $p \equiv 1 \mod 4$.

For example $13 = 2^3 + 3^2 = (2 - 3i)(2 + 3i)$. In Sage we create the number field $K = \mathbb{Q}(i)$ and its ring of integers $\mathcal{O}_K = \mathbb{Z}[i]$ by using the minimal polynomial $x^2 + 1$ of i:

```
K. \langle y \rangle = NumberField(x^{2+1});
```

2 0 = K.ring_of_integers();

The variable y now is a primitive element (In this case $y = \pm i$) of K. To factor 13 we consider the ideal (13):

```
I=0.ideal(13);
```

2 I.factor()

Output:

(Fractional ideal (-3*y - 2)) * (Fractional ideal (2*y + 3))

Which gives (13) = (-3i - 2)(2i + 3) = (2 + 3i)(2 - 3i).

To deal with primes in Sage one can use the following code, which gives the 550+1-th prime

```
1 P = Primes()
2 P.unrank(550)
Output:
1 4001
```

Naive way of finding the representation as a sum of two squares (just to see some code)

```
1 p=4001
2 for a in range(p):
3 for b in range(1,a+1):
4 if a^2+b^2==p:
5 print(a," ",b)
Output:
1 49 40
```

Which means $4001 = 49^2 + 40^2$.

Exercise 5

 $(y = \pm \sqrt{-5})$

We saw that in $R = \mathbb{Z}[\sqrt{-5}]$ we have the non-unique factorization of 6 into irreducible elements as $6 = 2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 - \sqrt{-5})$. Find prime ideals $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3 \subset R$ such that the ideals generated by these elements can be written as

(2) =
$$\mathfrak{p}_1^2$$
, (3) = $\mathfrak{p}_2\mathfrak{p}_3$, (1 + $\sqrt{-5}$) = $\mathfrak{p}_1\mathfrak{p}_2$, (1 - $\sqrt{-5}$) = $\mathfrak{p}_1\mathfrak{p}_3$

and conclude $(6) = \mathfrak{p}_1^2 \mathfrak{p}_2 \mathfrak{p}_3$.

We will use Sage to guess the ideals $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3$:

```
K.<y> = NumberField(x^2+5); 0 = K.ring_of_integers();
I=0.ideal(6);
I.factor()
Output:
(Fractional ideal (2, y + 1))^2 * (Fractional ideal (3, y + 1)) * (
Fractional ideal (3, y + 2))
```

(1) Introduction & Basics of algebra - Factorization in $\mathbb{Z}[\sqrt{-5}]$

$$\text{Want}\ (6)=\mathfrak{p}_1^2\mathfrak{p}_2\mathfrak{p}_3 \text{ with } (2)=\mathfrak{p}_1^2\,, (3)=\mathfrak{p}_2\mathfrak{p}_3\,, (1+\sqrt{-5})=\mathfrak{p}_1\mathfrak{p}_2\,, (1-\sqrt{-5})=\mathfrak{p}_1\mathfrak{p}_3\,, (1+\sqrt{-5})=\mathfrak{p}_1\mathfrak{p}_3\,, (1+\sqrt{-5})=\mathfrak{p}_2\mathfrak{p}_3\,, (1+\sqrt{-5})=\mathfrak{p}_1\mathfrak{p}_3\,, (1+\sqrt{-5})=\mathfrak{p}_1$$

- 1 I=0.ideal(6);
- 2 I.factor()

Output:

(Fractional ideal (2, y + 1))² * (Fractional ideal (3, y + 1)) * (Fractional ideal (3, y + 2))

Check if the guess is correct:

```
1 p1=0.ideal(2,y+1); p2=0.ideal(3,y+1); p3=0.ideal(3,y+2);
2 print("p1^2 = ",p1^2)
3 print("p2*p3 = ",p2*p3)
4 print("p1*p2 = ",p1*p2)
5 print("p1*p3 = ",p1*p3)
output:
1 p1^2 = Fractional ideal (2)
2 p2*p3 = Fractional ideal (3)
3 p1*p2 = Fractional ideal (y + 1)
4 p1*p3 = Fractional ideal (-y + 1)
```

Definition (Definition 2.1 & 2.6)

- An algebraic number field K is a finite field extension of \mathbb{Q} , i.e. $\mathbb{Q} \subset K$ and $\dim_{\mathbb{Q}} K < \infty$. The elements of K are called algebraic numbers.
- A number $x \in K$ of an algebraic number field is called an **algebraic integer** if it is the zero of a monic polynomial with integer coefficients, i.e. there exist some $a_1, \ldots, a_n \in \mathbb{Z}$ with

$$x^n + a_1 x^{n-1} + \dots + a_n = 0.$$

We denote the set of all algebraic integers of a number field K by

$$\mathcal{O}_K = \{x \in K \mid x \text{ algebraic integer}\}$$

This is called the ring of integers of K.

 \mathcal{O}_K is the **integral closure** of \mathbb{Z} in K.

Definition (Definition 3.4)

Let L/K be a finite field extension with [L:K] = n. For $x \in L$ define the K-linear map on the n-dimensional K-vector space L by

$$T_x: L \longrightarrow L$$
$$\alpha \longmapsto x \cdot \alpha.$$

Then we define the **trace** and **norm** of x by

$$\operatorname{Tr}_{L/K}(x) = \operatorname{Tr}(T_x), \quad \operatorname{N}_{L/K}(x) = \det(T_x).$$

For $K = \mathbb{Q}$, $L = \mathbb{Q}(i)$, and $m = a + bi \in L$ we have $\operatorname{Tr}_{L/K}(m) = 2a$ and $\operatorname{N}_{L/K}(m) = a^2 + b^2$.

Proposition (Proposition 3.6)

Let L/K be a finite field extension with [L:K] = n and char(K) = 0 or $|K| < \infty$. If $\sigma_i: L \to \overline{K}$ for $i = 1, \ldots, n$ denotes the n embeddings of L in \overline{K} , then for $x \in L$ we have

$$f_x(\lambda) = \prod_{i=1}^n (\lambda - \sigma_i(x))$$
$$\operatorname{Tr}_{L/K}(x) = \sum_{i=1}^n \sigma_i(x),$$
$$\operatorname{Nr}_{L/K}(x) = \prod_{i=1}^n \sigma_i(x).$$

)),

(Here $f_x(\lambda)$ is the characteristic polynomial of T_x)

Trace, Norm, and Discriminant - Calculation of Norm & Trace

Let
$$f(x) = x^4 - 2x^2 + x + 1 = \prod_{j=1}^4 (x - \theta_i)$$
 and $K = \mathbb{Q}(\theta) \cong \mathbb{Q}[X]_{f(X)}$

- 1 f(x)=x^4-2*x^2+x+1
 2 for r in f.roots():
- 3 print(r[0].n())

Output:

- -1.49021612009995
- 2 -0.524888598656405
- 3 1.00755235937818 0.513115795597015*I
- 4 1.00755235937818 + 0.513115795597015*I

```
K.<y> = NumberField(f(x))
```

```
2 print("K is a",K,"\nThe degree is ", K.degree())
```

```
3 [r,s]=K.signature()
```

4 print("K has",r," real embeddings and ",s, "pair of complex embeddings")

```
Output:
```

```
K is a Number Field in y with defining polynomial x^4 - 2xx^2 + x + 1
```

- 2 The degree is 4
- 3 K has 2 real embeddings and 1 pair of complex embeddings

3 Trace, Norm, and Discriminant - Calculation of Norm & Trace

Let
$$f(x) = x^4 - 2x^2 + x + 1 = \prod_{j=1}^4 (x - \theta_i)$$
 and $K = \mathbb{Q}(\theta) \cong \mathbb{Q}[X]_{f(X)}$

We calculate the norm and trace of the element $a = \theta^2 - 3$:

```
# Using the built-in functions for norm and trace
a = v^2 - 3
3 print(a, " has norm ", a.norm(), " and trace ", a.trace())
 Output:
y^2 - 3 has norm 13 and trace -8
1  # Calculating the norm&trace of y^2-3 by using the roots of f
_{2} p(x) = x^2 - 3
a norm = 1
4 trace=0
5 for r in f.roots():
 norm*=p(r[0])
6
_{7} trace+=p(r[0])
8 print(a, " has norm ", norm.n(), " and trace ", trace.n())
 Output:
```

Let
$$f(x) = x^4 - 2x^2 + x + 1 = \prod_{j=1}^4 (x - \theta_i)$$
 and $K = \mathbb{Q}(\theta) \cong \mathbb{Q}[X]_{f(X)}$

We can also calculate the norm and trace of the element $a= heta^2-3$ by using the embeddings created by sage:

```
+ # Calculating the norm&trace of y^2-3 by using the C-embeddings
 embeddings=K.embeddings(CC);
2
a = v^2 - 3
4 norm = 1
5 trace=0
6 for e in embeddings:
    norm*=e(a)
 trace+=e(a)
9 print(a, " has norm ", norm.n(), " and trace ", trace.n())
 Output:
y^2 - 3 has norm 13.000000000000 + 8.88178419700125e-16*I and trace
      -8 00000000000000
```

3) Trace, Norm, and Discriminant - Discriminant: Definition

Definition (Definition 3.8)

The discriminant of a basis $\alpha_1, \ldots, \alpha_n$ of L is defined by

$$d(\alpha_1,\ldots,\alpha_n) = \det(\sigma_i(\alpha_j))^2.$$

Definition (Definition 3.14)

An integral basis of B over A is a system of elements $\omega_1, \ldots, \omega_n \in B$, such that each $b \in B$ can be written uniquely as a linear combination $b = a_1\omega_1 + \cdots + a_n\omega_n$, with $a_1, \ldots, a_n \in A$.

Definition (Definition 3.18)

The discriminant of the number field $oldsymbol{K}$ is defined by

$$d_K = d(\omega_1, \ldots, \omega_n),$$

where $\omega_1, \ldots, \omega_n$ is an integral basis of K/\mathbb{Q} . (This always exists)

(3) Trace, Norm, and Discriminant - Calculating the discriminant

```
Let g(x) = x^3 - x^2 - 2x - 8 = \prod_{j=1}^3 (x - \theta_j) and K = \mathbb{Q}(\theta) \cong \mathbb{Q}[X]_{q(X)}.
g(x) = x^3 - x^2 - 2x - 8
_{2} K.<v> = NumberField(g(x))
3
4 print("K is a",K,"\nThe degree is ", K.degree())
5 [r,s]=K.signature()
6 print("K has",r," real embeddings and ",s, "pair of complex embeddings")
# Using the built in function for the discriminant & integral basis
9 print("discriminant: ", K.discriminant())
10 print("integral basis: ",K.integral_basis())
 Output:
K is a Number Field in y with defining polynomial x^3 - x^2 - 2*x - 8
<sup>2</sup> The degree is 3
3 K has 1 real embeddings and 1 pair of complex embeddings
4 discriminant: -503
5 integral basis: [1, 1/2*y^2 + 1/2*y, y^2]
```

(3) Trace, Norm, and Discriminant - Calculating the discriminant

For an integral basis $\omega_1, \ldots, \omega_n$ the discriminant of K is

```
d_K = d(\omega_1, \dots, \omega_n) = \det(\sigma_i(\omega_j))^2.
```

```
# Calculating the discriminant by using an integral basis
2 B=K.integral_basis()
 embeddings=K.embeddings(CC)
3
4 n=K.degree();
5 mat=matrix.zero(CC.n.n)
6
7 for i in range(n):
  for j in range(n):
8
          mat[i,j]=embeddings[i](B[j])
9
10
 print(det(mat)^2)
 Output:
 -503.00000000000
```

4 Dedekind domains - Definition & Unique factorization of ideals

Definition (Definition 4.2)

A domain R is called a **Dedekind domain** if

- O R is noetherian,
- \odot R is integrally closed,
- igoplus every non-zero prime ideal in R is maximal.

Proposition (Proposition 4.3)

The ring of integers \mathcal{O}_K of an algebraic number field K is a Dedekind domain.

Theorem (Theorem 4.4)

Let \mathcal{O} be a Dedekind domain. Every ideal \mathfrak{a} of \mathcal{O} , which differs from (0) and (1), admits a factorization

$$\mathfrak{a} = \mathfrak{p}_1 \dots \mathfrak{p}_n$$

into nonzero prime ideals \mathfrak{p}_i of \mathcal{O} , which is unique up to the order of the factors.

Definition (Definition 4.8)

Let \mathcal{O} be a Dedekind domain with field of fractions $K = \operatorname{Frac} \mathcal{O}$.

- A fractional ideal of K is a finitely generated \mathcal{O} -submodule $\mathfrak{a} \neq \{0\}$ of K.
- Fractional ideals in \mathcal{O} are called **integral ideals** of K.
- For $a \in K^{\times}$ the module $(a) := a\mathcal{O}$ is a fractional ideal, called a fractional principal ideal.

Proposition (Proposition 4.10)

The fractional ideals form an abelian group, the **ideal group** J_K of K. The identity is $(1) = \mathcal{O}$, and the inverse of a fractional ideal \mathfrak{a} is $\mathfrak{a}^{-1} = \{x \in K \mid x\mathfrak{a} \subset \mathcal{O}\}.$

Definition (Definition 4.13)

By P_K we denote the subgroup of J_K generated by all fractional principal ideals (a) = aO with a ∈ K[×].
 The quotient Cl_K = J_K/P_K is called the (ideal) class group of K.

Let V be an euclidean vector space. A discrete subgroup $\Gamma \subset V$ is called a lattice (Def. 5.1 & Prop. 5.3)

Definition (Definition 5.6)

A subset $X \subset V$ is called

O centrally symmetric if for all $x \in X$ we also have $-x \in X$.

• convex if for all $x, y \in X$ the line segment $\{ty + (1-t)x \mid 0 \le t \le 1\}$ is contained in X.

Theorem (Minkowski's lattice point theorem, Theorem 5.7)

Let Γ be a complete lattice in the n-dimensional euclidean vector space V and X a centrally symmetric, convex subset of V. Suppose that

 $\operatorname{vol}(X) > 2^n \operatorname{vol}(\Gamma).$

Then X contains at least one nonzero lattice point $\gamma \in \Gamma$.

6 Minkowski Theory - Minkowski space

Consider all embeddings $\tau_i:K\to\mathbb{C}$ at the same time and define the map

$$j: K \longrightarrow K_{\mathbb{C}} := \prod_{\tau} \mathbb{C}$$
$$a \longmapsto j(a) = (\tau(a))_{\tau} =: (a_{\tau})_{\tau}.$$

Denote by F the complex conjugation acting on $K_{\mathbb{C}}$ and define $\langle x, y \rangle = \sum_{\tau} x_{\tau} \overline{y_{\tau}}$ for $x, y \in K_{\mathbb{C}}$.

Definition (Definition 6.1)

Let $K_{\mathbb{R}}$ denote the F-invariant subspace of $K_{\mathbb{C}}$, i.e.

$$K_{\mathbb{R}} = \{ z \in K_{\mathbb{C}} \mod z_{\overline{\tau}} = \overline{z_{\tau}} \}$$
.

The restriction of \langle, \rangle on $K_{\mathbb{R}}$ gives a scalar product $\langle, \rangle : K_{\mathbb{R}} \times K_{\mathbb{R}} \to \mathbb{R}$ on the \mathbb{R} -vector space $K_{\mathbb{R}}$. The euclidean vector space $(K_{\mathbb{R}}, \langle, \rangle)$ is called **Minkowski space**.

Proposition (Proposition 6.3)

If $\mathfrak{a} \neq 0$ is an ideal of \mathcal{O}_K , then $\Gamma = j(\mathfrak{a})$ is a complete lattice in $K_{\mathbb{R}}$. Its fundamental mesh has volume

$$\operatorname{vol}(\Gamma) = \sqrt{|d_K|} [\mathcal{O}_K : \mathfrak{a}]$$

Theorem (Theorem 6.4)

Let $\mathfrak{a} \neq (0)$ be an ideal of \mathcal{O}_K , and let $c_{\tau} > 0$ be real numbers for each embedding $\tau \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$, such that $c_{\tau} = c_{\overline{\tau}}$ and

$$\prod_{\tau} c_{\tau} > \left(\frac{2}{\pi}\right)^s \sqrt{|d_K|} [\mathcal{O}_K : \mathfrak{a}].$$

Then there exists an $a \in \mathfrak{a}$, $a \neq 0$ with $|\tau(a)| < c_{\tau}$ for all $\tau \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$.

Definition (Definition 7.1)

Let $\mathfrak{a} \neq (0)$ be an ideal in \mathcal{O}_K . Then the **absolute norm** of \mathfrak{a} is

$$\mathfrak{N}(\mathfrak{a}) = [\mathcal{O}_K : \mathfrak{a}] = \left| \begin{array}{c} \mathcal{O}_K / \mathfrak{a} \end{array} \right|.$$

Lemma (Lemma 7.5)

In every ideal $\mathfrak{a} \neq (0)$ of \mathcal{O}_K there exists an $a \in \mathfrak{a}, a \neq 0$, with

$$|\operatorname{N}_{K/\mathbb{Q}}(a)| \leq \left(\frac{2}{\pi}\right)^2 \sqrt{|d_K|} \mathfrak{N}(\mathfrak{a}).$$

Theorem (Theorem 7.6)

The ideal class group $\operatorname{Cl}_K = J_K / P_K$ is finite. Its order $h_k = |\operatorname{Cl}_K|$ is called the **class number** of K.

Let $K = \mathbb{Q}(\sqrt{-5})$ then $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$. The class number is $h_K = 2$ and we can compute the classes as follows:

```
1 K.<y> = NumberField(x^2+5)

2 CK = K.class_group();

3 print(CK)

4 print("generators: ",CK.gen())

5 print("class number: ",K.class_number())

Comput:

1 Class group of order 2 with structure C2 of Number Field in y with

defining polynomial x^2 + 5

2 generators: Fractional ideal class (2, y + 1)

3 class number: 2
```

Definition (Definition 7.9)

The **Dedekind zeta function** of a number field K is defined for $z \in \mathbb{C}$ with $\operatorname{Re}(z) > 1$ by

$$\xi_K(z) = \sum_{(0) \neq \mathfrak{a} \subset \mathcal{O}_K} \frac{1}{\mathfrak{N}(\mathfrak{a})^z}$$

Theorem (Analytic class number formula, Theorem 7.11)

The residue of ζ_K at z=1 is given by

$$\lim_{z \to 1} (z - 1)\zeta_K(z) = \frac{2^r (2\pi)^s h_K R_K}{\omega_K \sqrt{|d_K|}},$$

where R_K is the regulator of K and ω_K is the number of roots of unity in K.

 $\overline{7}$ The class number - Analytic class number formula for $\mathbb{Q}(\sqrt{-5})$

$$\lim_{z \to 1} (z-1)\zeta_K(z) = \frac{2^r (2\pi)^s h_K R_K}{\omega_K \sqrt{|d_K|}}$$

```
1 # Analytic class number formula
_2 K.<y> = NumberField(x^2+5)
3 DZ = K.zeta_function()
4 [r,s]=K.signature()
5 RK=K.regulator()
wK=K.zeta order()
7 dK=K.discriminant()
8 hK=K.class_number()
9 print("RHS:", 2<sup>r</sup>*(2*pi.n())<sup>s</sup>*hK*RK/(wK*sqrt(abs(dK.n()))))
10 print("LHS: ",(0.9999999-1)*DZ(0.9999999))
 Output:
 RHS: 1 40496294620815
```

² LHS: 1.40496290972109

8 Fermat's Last Theorem - Kummer's result

Recall that for $n \geq 1$ the Fermat equation is

$$x^n + y^n = z^n \,. \tag{1}$$

We are interest in non-trivial solutions ($xyz \neq 0$) for (1) with $x, y, z \in \mathbb{Z}$.

Definition (Definition 8.2)

A prime p is called **regular** if p does not divide $h_{\mathbb{Q}(\zeta_p)}$.

Theorem (Kummer 1850, Theorem 8.3)

 \blacksquare If $n = p \ge 3$ is a regular prime then there are no non-trivial solutions to (1).

• A prime p is regular if and only if it does not divide the numerator of the Bernoulli numbers B_k for k = 2, 4, ..., p - 3. Here the **Bernoulli numbers** B_k are defined by their exponential generating series

$$\sum_{k\geq 0} \frac{B_k}{k!} X^k := \frac{X}{e^X - 1}$$

Definition (Definition 8.2)

```
A prime p is called regular if p does not divide h_{\mathbb{Q}(\zeta_p)}.
```

```
# Check if a prime is regular by using the definition
_{2} p = 7
3 K.<y> = CyclotomicField(p)
4 classnumber = K.class number()
5 print("class number: ", classnumber)
6
7 if classnumber % p != 0:
 print(p, " is regular")
8
• else:
  print(p, " is not regular")
10
 Output:
class number: 1
2 7 is regular
```

Notice that this becomes really (!) slow for larger primes p.

8 Fermat's Last Theorem - Regular primes with Kummer's criteria

Kummer's criteria: A prime p is regular if and only if it does not divide the numerator of the Bernoulli numbers B_k for k = 2, 4, ..., p - 3.

```
# Using Kummer's criteria to check if a prime is regular
_{2} p=37
3 regular=True
4 for k in range(2,p-2):
     if k % 2 ==0 and bernoulli(k).numerator() % p == 0:
5
          regular=False
6
          break
7
8
9 if regular:
       print(p, " is regular")
10
11 else:
     print(p, " is not regular")
12
 Output:
1 37 is not regular
```

8 Fermat's Last Theorem - Regular primes with Kummer's criteria II

```
# Give all non-regular primes up to a given bound
   = Primes()
2 P
4 for n in range(30):
      p = P.unrank(n)
5
     regular=True
6
      for k in range(2,p-2):
          if k % 2 ==0 and bernoulli(k).numerator() % p == 0:
8
              regular=False
9
              break
10
     if not regular:
12
          print(p, " is not regular")
 Output:
1 37
      is not regular
2 59
      is not regular
3 67
     is not regular
4 101 is not regular
5 103 is not regular
```

Denote by $\mu(K)$ the set of roots of unity contained in a number field K.

Theorem (Dirichlet's unit theorem, Theorem 9.4)

The unit group \mathcal{O}_K^{\times} is given by a direct product of the cyclic group $\mu(K)$ and a free abelian group of rank r+s-1, i.e.

$$\mathcal{O}_K^{\times} \cong \mu(K) \oplus \mathbb{Z}^{r+s-1}$$
.

This theorem implies that there exist units $\epsilon_1, \ldots, \epsilon_t$, with t = r + s - 1, called the **fundamental units**, such that any unit $\epsilon \in \mathcal{O}_K^{\times}$ can be written as

$$\epsilon = \zeta \epsilon_1^{\nu_1} \cdots \epsilon_t^{\nu_t}$$

with $\zeta \in \mu(K)$ and $\nu_1, \ldots, \nu_t \in \mathbb{Z}$.

9 Dirichlet's Unit Theorem - Example

There exist units $\epsilon_1, \ldots, \epsilon_t$, with t = r + s - 1, called the **fundamental units**, such that any unit $\epsilon \in \mathcal{O}_K^{\times}$ can be written as

$$\epsilon = \zeta \epsilon_1^{\nu_1} \cdots \epsilon_t^{\nu_t}$$

```
with \zeta \in \mu(K) and \nu_1, \ldots, \nu_t \in \mathbb{Z}.
K. < y > = NumberField(x^2-7)
2 UK = UnitGroup(K);
3 print(UK);
4 print("generators: ", UK.gens_values())
5 zeta=UK.gens()[0]
6 eps1=UK.gens()[1]
 Output:
 Unit group with structure C2 x Z of Number Field in y with defining
     polynomial x^2 - 7
_{2} generators: [-1, 3*y - 8]
```

Here we see that $8+3\sqrt{7}$ is the fundamental unit for $K=\mathbb{Q}(\sqrt{7}).$

Setup in this section:

- $\bullet \ A: {\rm Dedekind\ domain,}$
- $K = \operatorname{Frac} A$,
- L/K: finite extension,
- $\bullet \ \mathcal{O}: \text{integral closure of } A \text{ in } L.$

Proposition (Proposition 10.1 & 10.2)

- O is a Dedekind domain.
- Let \mathfrak{p} be a prime ideal of A then $\mathfrak{p}\mathcal{O} \neq \mathcal{O}$.

A prime ideal $\mathfrak{p}
eq (0)$ of A decomposes in $\mathcal O$ in a unique way into a product of prime ideals:

$$\mathfrak{p}\mathcal{O} = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}$$
.

(10) Extensions of Dedekind domains - Fundamental identity

A prime ideal $\mathfrak{p} \neq (0)$ of A decomposes in $\mathcal O$ in a unique way into a product of prime ideals:

$$\mathfrak{p}\mathcal{O} = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r} \,. \tag{2}$$

Definition (Definition 10.3)

- **(**) The exponent e_i in (2) is called the **ramification index** of \mathfrak{P}_i over \mathfrak{p} .
- The degree of the field extension

$$f_i = \left[\mathcal{O}_{\mathfrak{P}_i} : \mathcal{A}_{\mathfrak{p}} \right]$$

is called the **inertia degree** of \mathfrak{P}_i over \mathfrak{p} .

Theorem (Fundamental identity, Definition 10.4)

We have

$$\sum_{i=1}^{r} e_i f_i = n = [L:K].$$

```
\mathfrak{p}\mathcal{O}=\mathfrak{P}_1^{e_1}\cdots\mathfrak{P}_r^{e_r}, \ \ e_i\text{: ramification index}, \ \ f_i=\left[\overset{\mathcal{O}}{\swarrow}_{\mathfrak{P}_i}:\overset{A}{\underset{p}{\rightarrow}}\right]\text{: inertia degree interval of the set of the set
```

```
# Calculate the ramification indices and inertia degrees
_{2} K.<v> = NumberField(x^2+1)
_{3} p=K.ideal(53)
4 fac=K.factor(p)
5 print("The ideals over ", p, " are:")
6 for P in fac:
     print(P[0], "with ramification index e =", P[1], " and inertia
     degree f =", P[0].residue_class_degree())
 Output:
The ideals over Fractional ideal (53) are:
<sup>2</sup> Fractional ideal (-2*y + 7) with ramification index e = 1 and inertia
     degree f = 1
_3 Fractional ideal (2*y + 7) with ramification index e = 1 and inertia
     degree f = 1
```

Definition

Let $\mathfrak{p}\subset A$ be a prime ideal with the following factorization in $\mathcal O$

$$\mathfrak{p}\mathcal{O}=\mathfrak{P}_1^{e_1}\cdots\mathfrak{P}_r^{e_r}$$
 .

p is said to **split completely** (or **totally split**) in L, if r = n = [L : K], i.e. $e_i = f_i = 1$ for all i = 1, ..., r.

(D) \mathfrak{p} is called **nonsplit** if r = 1, i.e. there is just one prime ideal in \mathcal{O} over \mathfrak{p} .

- \mathfrak{P}_i is called **unramified** over A (or K) if $e_i = 1$ and if the extension $\mathcal{O}_{\mathfrak{P}_i}/\mathcal{A}_{\mathfrak{P}}$ is separable. Otherwise \mathfrak{P}_i is called **ramified**. If $e_i > 1$ and $f_i = 1$ then \mathfrak{P}_i is called **totally ramified**.
- p is called unramified if all \$\mathcal{P}_i\$ over \$\mathcal{p}\$ are unramified. Otherwise, \$\mathcal{p}\$ is called ramified. In particular, if \$\mathcal{p}\$ split completely then it is unramified.
-) The extension L/K is called unramified if all prime ideals $\mathfrak{p}\subset A$ are unramified.