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Goal of these slides

Goal: Review the content of the course "Algebraic Number Theory" and do some examples in Sage

(sagemath.org & cocalc.com).

Overview of what we did:

1 Introduction & Basics of algebra

2 Integrality

3 Trace, Norm, and Discriminant

4 Dedekind domains

5 Lattices

6 Minkowski Theory

7 The class number

8 Fermat’s Last Theorem

9 Dirichlet’s Unit Theorem

10 Extensions of Dedekind domains
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1© Introduction & Basics of algebra - Prime as a sum of two squares

Theorem ( Theorem 1.3 )

A prime p ≥ 3 can be written as a sum of two squares if and only if p ≡ 1 mod 4.

For example 13 = 23 + 32 = (2− 3i)(2 + 3i).

In Sage we create the number fieldK = Q(i) and its ring of integersOK = Z[i] by using the minimal

polynomial x2 + 1 of i:

1 K.<y> = NumberField(x^2+1);
2 O = K.ring_of_integers ();

The variable y now is a primitive element (In this case y = ±i) ofK . To factor 13 we consider the ideal (13):

1 I=O.ideal (13);
2 I.factor ()

Output:

1 (Fractional ideal (-3*y - 2)) * (Fractional ideal (2*y + 3))

Which gives (13) = (−3i− 2)(2i+ 3)= (2 + 3i)(2− 3i).
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1© Introduction & Basics of algebra - Prime as a sum of two squares

To deal with primes in Sage one can use the following code, which gives the 550 + 1-th prime

1 P = Primes ()
2 P.unrank (550)

Output:

1 4001

Naive way of finding the representation as a sum of two squares (just to see some code)

1 p=4001
2 for a in range(p):
3 for b in range(1,a+1):
4 if a^2+b^2==p:
5 print(a," ",b)

Output:

1 49 40

Which means 4001 = 492 + 402.
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1© Introduction & Basics of algebra - Factorization in Z[
√
−5]

Exercise 5

We saw that inR = Z[
√
−5] we have the non-unique factorization of 6 into irreducible elements as

6 = 2 · 3 = (1 +
√
−5) · (1−

√
−5). Find prime ideals p1, p2, p3 ⊂ R such that the ideals generated by

these elements can be written as

(2) = p2
1 , (3) = p2p3 , (1 +

√
−5) = p1p2 , (1−

√
−5) = p1p3

and conclude (6) = p2
1p2p3.

We will use Sage to guess the ideals p1, p2, p3:

1 K.<y> = NumberField(x^2+5); O = K.ring_of_integers ();
2 I=O.ideal (6);
3 I.factor ()

Output:

1 (Fractional ideal (2, y + 1))^2 * (Fractional ideal (3, y + 1)) * (
Fractional ideal (3, y + 2))

(y = ±
√
−5)
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1© Introduction & Basics of algebra - Factorization in Z[
√
−5]

Want (6) = p2
1p2p3 with (2) = p2

1 , (3) = p2p3 , (1 +
√
−5) = p1p2 , (1−

√
−5) = p1p3.

1 I=O.ideal (6);
2 I.factor ()

Output:

1 (Fractional ideal (2, y + 1))^2 * (Fractional ideal (3, y + 1)) * (
Fractional ideal (3, y + 2))

Check if the guess is correct:

1 p1=O.ideal(2,y+1); p2=O.ideal(3,y+1); p3=O.ideal(3,y+2);
2 print("p1^2 = ",p1^2)
3 print("p2*p3 = ",p2*p3)
4 print("p1*p2 = ",p1*p2)
5 print("p1*p3 = ",p1*p3)

Output:

1 p1^2 = Fractional ideal (2)
2 p2*p3 = Fractional ideal (3)
3 p1*p2 = Fractional ideal (y + 1)
4 p1*p3 = Fractional ideal (-y + 1)
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2© Integrality - Recall some notations

Definition ( Definition 2.1 & 2.6 )

(i) An algebraic number fieldK is a finite field extension ofQ, i.e. Q ⊂ K and dimQK <∞. The

elements ofK are called algebraic numbers.

(ii) A number x ∈ K of an algebraic number field is called an algebraic integer if it is the zero of a monic

polynomial with integer coefficients, i.e. there exist some a1, . . . , an ∈ Z with

xn + a1x
n−1 + · · ·+ an = 0 .

We denote the set of all algebraic integers of a number fieldK by

OK = {x ∈ K | x algebraic integer}

This is called the ring of integers of K .

(iii) OK is the integral closure of Z inK .
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3© Trace, Norm, and Discriminant - Definition

Definition ( Definition 3.4 )

Let L/K be a finite field extension with [L : K] = n. For x ∈ L define theK-linear map on the n-dimensional

K-vector space L by

Tx : L −→ L

α 7−→ x · α.

Then we define the trace and norm of x by

TrL/K(x) = Tr(Tx), NL/K(x) = det(Tx) .

ForK = Q, L = Q(i), andm = a+ bi ∈ L we have TrL/K(m) = 2a and NL/K(m) = a2 + b2.

1 K.<y> = NumberField(x^2+1)
2 m=5+4*y
3 print("The element ",m," has norm ",m.norm()," and trace ",m.trace())

Output:

1 The element 4*y + 5 has norm 41 and trace 10
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3© Trace, Norm, and Discriminant - Calculation of Norm & Trace

Proposition ( Proposition 3.6 )

Let L/K be a finite field extension with [L : K] = n and char(K) = 0 or |K| <∞. If σi : L→ K̄ for

i = 1, . . . , n denotes the n embeddings of L in K̄ , then for x ∈ L we have

fx(λ) =

n∏
i=1

(λ− σi(x)) ,

TrL/K(x) =

n∑
i=1

σi(x) ,

NL/K(x) =

n∏
i=1

σi(x) .

(Here fx(λ) is the characteristic polynomial of Tx)
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3© Trace, Norm, and Discriminant - Calculation of Norm & Trace

Let f(x) = x4 − 2x2 + x+ 1 =
∏4
j=1(x− θi) andK = Q(θ) ∼= Q[X]�f(X).

1 f(x)=x^4-2*x^2+x+1
2 for r in f.roots():
3 print(r[0].n())

Output:

1 -1.49021612009995
2 -0.524888598656405
3 1.00755235937818 - 0.513115795597015*I
4 1.00755235937818 + 0.513115795597015*I

1 K.<y> = NumberField(f(x))
2 print("K is a",K,"\nThe degree is ", K.degree ())
3 [r,s]=K.signature ()
4 print("K has",r," real embeddings and ",s, "pair of complex embeddings")

Output:

1 K is a Number Field in y with defining polynomial x^4 - 2*x^2 + x + 1
2 The degree is 4
3 K has 2 real embeddings and 1 pair of complex embeddings
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3© Trace, Norm, and Discriminant - Calculation of Norm & Trace

Let f(x) = x4 − 2x2 + x+ 1 =
∏4
j=1(x− θi) andK = Q(θ) ∼= Q[X]�f(X).

We calculate the norm and trace of the element a = θ2 − 3:

1 # Using the built -in functions for norm and trace
2 a=y^2-3
3 print(a, " has norm ", a.norm(), " and trace ", a.trace ())

Output:

1 y^2 - 3 has norm 13 and trace -8

1 # Calculating the norm&trace of y^2-3 by using the roots of f
2 p(x)=x^2-3
3 norm=1
4 trace=0
5 for r in f.roots():
6 norm*=p(r[0])
7 trace+=p(r[0])
8 print(a, " has norm ", norm.n(), " and trace ", trace.n())

Output:

1 y^2 - 3 has norm 13.0000000000000 and trace -8.00000000000000
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3© Trace, Norm, and Discriminant - Calculation of Norm & Trace

Let f(x) = x4 − 2x2 + x+ 1 =
∏4
j=1(x− θi) andK = Q(θ) ∼= Q[X]�f(X).

We can also calculate the norm and trace of the element a = θ2− 3 by using the embeddings created by sage:

1 # Calculating the norm&trace of y^2-3 by using the C-embeddings
2 embeddings=K.embeddings(CC);
3 a=y^2-3
4 norm=1
5 trace=0
6 for e in embeddings:
7 norm*=e(a)
8 trace+=e(a)
9 print(a, " has norm ", norm.n(), " and trace ", trace.n())

Output:

1 y^2 - 3 has norm 13.0000000000000 + 8.88178419700125e-16*I and trace
-8.00000000000000
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3© Trace, Norm, and Discriminant - Discriminant: Definition

Definition ( Definition 3.8 )

The discriminant of a basis α1, . . . , αn of L is defined by

d(α1, . . . , αn) = det(σi(αj))
2.

Definition ( Definition 3.14 )

An integral basis ofB overA is a system of elements ω1, . . . , ωn ∈ B, such that each b ∈ B can be written

uniquely as a linear combination b = a1ω1 + · · ·+ anωn, with a1, . . . , an ∈ A.

Definition ( Definition 3.18 )

The discriminant of the number field K is defined by

dK = d(ω1, . . . , ωn),

where ω1, . . . , ωn is an integral basis ofK/Q. (This always exists)
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3© Trace, Norm, and Discriminant - Calculating the discriminant

Let g(x) = x3 − x2 − 2x− 8 =
∏3
j=1(x− θi) andK = Q(θ) ∼= Q[X]�g(X).

1 g(x)=x^3-x^2-2x-8
2 K.<y> = NumberField(g(x))
3

4 print("K is a",K,"\nThe degree is ", K.degree ())
5 [r,s]=K.signature ()
6 print("K has",r," real embeddings and ",s, "pair of complex embeddings")
7

8 # Using the built in function for the discriminant & integral basis
9 print("discriminant: ", K.discriminant ())

10 print("integral basis: ",K.integral_basis ())
Output:

1 K is a Number Field in y with defining polynomial x^3 - x^2 - 2*x - 8
2 The degree is 3
3 K has 1 real embeddings and 1 pair of complex embeddings
4 discriminant: -503
5 integral basis: [1, 1/2*y^2 + 1/2*y, y^2]
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3© Trace, Norm, and Discriminant - Calculating the discriminant

For an integral basis ω1, . . . , ωn the discriminant ofK is

dK = d(ω1, . . . , ωn) = det(σi(ωj))
2 .

1 # Calculating the discriminant by using an integral basis
2 B=K.integral_basis ()
3 embeddings=K.embeddings(CC)
4 n=K.degree ();
5 mat=matrix.zero(CC ,n,n)
6

7 for i in range(n):
8 for j in range(n):
9 mat[i,j]= embeddings[i](B[j])

10

11 print(det(mat)^2)
Output:

1 -503.000000000000
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4© Dedekind domains - Definition & Unique factorization of ideals

Definition ( Definition 4.2 )

A domainR is called a Dedekind domain if

(i) R is noetherian,

(ii) R is integrally closed,

(iii) every non-zero prime ideal inR is maximal.

Proposition ( Proposition 4.3 )

The ring of integersOK of an algebraic number fieldK is a Dedekind domain.

Theorem ( Theorem 4.4 )

LetO be a Dedekind domain. Every ideal a ofO, which differs from (0) and (1), admits a factorization

a = p1 . . . pr

into nonzero prime ideals pi ofO, which is unique up to the order of the factors.
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4© Dedekind domains - Fractional ideals

Definition ( Definition 4.8 )

LetO be a Dedekind domain with field of fractionsK = FracO.

(i) A fractional ideal ofK is a finitely generatedO-submodule a 6= {0} ofK .

(ii) Fractional ideals inO are called integral ideals ofK .

(iii) For a ∈ K× the module (a) := aO is a fractional ideal, called a fractional principal ideal.

Proposition ( Proposition 4.10 )

The fractional ideals form an abelian group, the ideal group JK ofK . The identity is (1) = O, and the inverse of

a fractional ideal a is a−1 = {x ∈ K | xa ⊂ O}.

Definition ( Definition 4.13 )

(i) By PK we denote the subgroup of JK generated by all fractional principal ideals (a) = aO with a ∈ K×.

(ii) The quotient ClK = JK�PK is called the (ideal) class group ofK .
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5© Lattices - Minkowski’s theorem

Let V be an euclidean vector space. A discrete subgroup Γ ⊂ V is called a lattice (Def. 5.1 & Prop. 5.3)

Definition ( Definition 5.6 )

A subsetX ⊂ V is called

(i) centrally symmetric if for all x ∈ X we also have−x ∈ X .

(ii) convex if for all x, y ∈ X the line segment {ty + (1− t)x | 0 ≤ t ≤ 1} is contained inX .

Theorem ( Minkowski’s lattice point theorem, Theorem 5.7 )

Let Γ be a complete lattice in the n-dimensional euclidean vector space V andX a centrally symmetric, convex

subset of V. Suppose that

vol(X) > 2n vol(Γ).

ThenX contains at least one nonzero lattice point γ ∈ Γ.
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6© Minkowski Theory - Minkowski space

Consider all embeddings τi : K → C at the same time and define the map

j : K −→ KC :=
∏
τ

C

a 7−→ j(a) = (τ(a))τ =: (aτ )τ .

Denote by F the complex conjugation acting onKC and define 〈x, y〉 =
∑

τ xτyτ for x, y ∈ KC.

Definition ( Definition 6.1 )

LetKR denote the F -invariant subspace ofKC, i.e.

KR = {z ∈ KC mod zτ̄ = zτ} .

The restriction of 〈, 〉 onKR gives a scalar product 〈, 〉 : KR ×KR → R on theR-vector spaceKR. The

euclidean vector space (KR, 〈, 〉) is called Minkowski space.
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6© Minkowski Theory - Useful theorem

Proposition ( Proposition 6.3 )

If a 6= 0 is an ideal ofOK , then Γ = j(a) is a complete lattice inKR. Its fundamental mesh has volume

vol(Γ) =
√
|dK |[OK : a] .

Theorem ( Theorem 6.4 )

Let a 6= (0) be an ideal ofOK , and let cτ > 0 be real numbers for each embedding τ ∈ HomQ(K,C), such

that cτ = cτ and ∏
τ

cτ >

(
2

π

)s√
|dK |[OK : a] .

Then there exists an a ∈ a, a 6= 0 with |τ(a)| < cτ for all τ ∈ HomQ(K,C).
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7© The class number - Absolute norm & class number

Definition ( Definition 7.1 )

Let a 6= (0) be an ideal inOK . Then the absolute norm of a is

N(a) = [OK : a] =
∣∣∣OK�a∣∣∣ .

Lemma ( Lemma 7.5 )

In every ideal a 6= (0) ofOK there exists an a ∈ a, a 6= 0, with

|NK/Q(a)| ≤
(

2

π

)2√
|dK |N(a) .

Theorem ( Theorem 7.6 )

The ideal class group ClK = JK�PK is finite. Its order hk = |ClK | is called the class number ofK .
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7© The class number - Calculation

LetK = Q(
√
−5) thenOK = Z[

√
−5]. The class number is hK = 2 and we can compute the classes

as follows:

1 K.<y> = NumberField(x^2+5)
2 CK = K.class_group ();
3 print(CK)
4 print("generators: ",CK.gen())
5 print("class number: ",K.class_number ())

Output:

1 Class group of order 2 with structure C2 of Number Field in y with
defining polynomial x^2 + 5

2 generators: Fractional ideal class (2, y + 1)
3 class number: 2
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7© The class number - Dedekind zeta function & Analytic class number formula

Definition ( Definition 7.9 )

The Dedekind zeta function of a number fieldK is defined for z ∈ C with Re(z) > 1 by

ζK(z) =
∑

(0)6=a⊂OK

1

N(a)z
.

Theorem (Analytic class number formula, Theorem 7.11 )

The residue of ζK at z = 1 is given by

lim
z→1

(z − 1)ζK(z) =
2r(2π)shKRK

ωK
√
|dK

,

whereRK is the regulator ofK and ωK is the number of roots of unity inK .
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7© The class number - Analytic class number formula forQ(
√
−5)

lim
z→1

(z − 1)ζK(z) =
2r(2π)shKRK

ωK
√
|dK

1 # Analytic class number formula
2 K.<y> = NumberField(x^2+5)
3 DZ = K.zeta_function ()
4 [r,s]=K.signature ()
5 RK=K.regulator ()
6 wK=K.zeta_order ()
7 dK=K.discriminant ()
8 hK=K.class_number ()
9 print("RHS:", 2^r*(2*pi.n())^s*hK*RK/(wK*sqrt(abs(dK.n()))))

10 print("LHS: " ,(0.9999999 -1)*DZ (0.9999999))
Output:

1 RHS: 1.40496294620815
2 LHS: 1.40496290972109
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8© Fermat’s Last Theorem - Kummer’s result

Recall that for n ≥ 1 the Fermat equation is

xn + yn = zn . (1)

We are interest in non-trivial solutions (xyz 6= 0) for (1) with x, y, z ∈ Z.

Definition ( Definition 8.2 )

A prime p is called regular if p does not divide hQ(ζp).

Theorem (Kummer 1850, Theorem 8.3)

(i) If n = p ≥ 3 is a regular prime then there are no non-trivial solutions to (1).

(ii) A prime p is regular if and only if it does not divide the numerator of the Bernoulli numbersBk for

k = 2, 4, . . . , p− 3. Here the Bernoulli numbersBk are defined by their exponential generating series∑
k≥0

Bk
k!
Xk :=

X

eX − 1
.
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8© Fermat’s Last Theorem - Regular primes

Definition ( Definition 8.2 )

A prime p is called regular if p does not divide hQ(ζp).

1 # Check if a prime is regular by using the definition
2 p=7
3 K.<y> = CyclotomicField(p)
4 classnumber = K.class_number ()
5 print("class number: ", classnumber)
6

7 if classnumber % p != 0:
8 print(p, " is regular")
9 else:

10 print(p, " is not regular")
Output:

1 class number: 1
2 7 is regular

Notice that this becomes really (!) slow for larger primes p.
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8© Fermat’s Last Theorem - Regular primes with Kummer’s criteria

Kummer’s criteria: A prime p is regular if and only if it does not divide the numerator of the Bernoulli numbers

Bk for k = 2, 4, . . . , p− 3.

1 # Using Kummer ’s criteria to check if a prime is regular
2 p=37
3 regular=True
4 for k in range(2,p-2):
5 if k % 2 ==0 and bernoulli(k).numerator () % p == 0:
6 regular=False
7 break
8

9 if regular:
10 print(p, " is regular")
11 else:
12 print(p, " is not regular")

Output:

1 37 is not regular
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8© Fermat’s Last Theorem - Regular primes with Kummer’s criteria II

1 # Give all non -regular primes up to a given bound
2 P = Primes ()
3

4 for n in range (30):
5 p = P.unrank(n)
6 regular=True
7 for k in range(2,p-2):
8 if k % 2 ==0 and bernoulli(k).numerator () % p == 0:
9 regular=False

10 break
11

12 if not regular:
13 print(p, " is not regular")

Output:

1 37 is not regular
2 59 is not regular
3 67 is not regular
4 101 is not regular
5 103 is not regular
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9© Dirichlet’s Unit Theorem - Statement

Denote by µ(K) the set of roots of unity contained in a number fieldK .

Theorem (Dirichlet’s unit theorem, Theorem 9.4 )

The unit groupO×K is given by a direct product of the cyclic group µ(K) and a free abelian group of rank

r + s− 1, i.e.

O×K ∼= µ(K)⊕ Zr+s−1 .

This theorem implies that there exist units ε1, . . . , εt, with t = r+ s− 1, called the fundamental units, such

that any unit ε ∈ O×K can be written as

ε = ζεν11 · · · ε
νt
t

with ζ ∈ µ(K) and ν1, . . . , νt ∈ Z.
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9© Dirichlet’s Unit Theorem - Example

There exist units ε1, . . . , εt, with t = r + s− 1, called the fundamental units, such that any unit ε ∈ O×K
can be written as

ε = ζεν11 · · · ε
νt
t

with ζ ∈ µ(K) and ν1, . . . , νt ∈ Z.

1 K.<y> = NumberField(x^2-7)
2 UK = UnitGroup(K);
3 print(UK);
4 print("generators: ", UK.gens_values ())
5 zeta=UK.gens()[0]
6 eps1=UK.gens()[1]

Output:

1 Unit group with structure C2 x Z of Number Field in y with defining
polynomial x^2 - 7

2 generators: [-1, 3*y - 8]

Here we see that 8 + 3
√

7 is the fundamental unit forK = Q(
√

7).
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10© Extensions of Dedekind domains - Notations

Setup in this section:

A: Dedekind domain,

K = FracA,

L/K : finite extension,

O: integral closure ofA in L.

K L

A O

Proposition (Proposition 10.1 & 10.2 )

(i) O is a Dedekind domain.

(ii) Let p be a prime ideal ofA then pO 6= O.

A prime ideal p 6= (0) ofA decomposes inO in a unique way into a product of prime ideals:

pO = Pe1
1 · · ·P

er
r .
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10© Extensions of Dedekind domains - Fundamental identity

A prime ideal p 6= (0) ofA decomposes inO in a unique way into a product of prime ideals:

pO = Pe1
1 · · ·P

er
r . (2)

Definition (Definition 10.3)

(i) The exponent ei in (2) is called the ramification index of Pi over p.

(ii) The degree of the field extension

fi =
[
O�Pi

: A�p
]

is called the inertia degree of Pi over p.

Theorem (Fundamental identity, Definition 10.4)

We have r∑
i=1

eifi = n = [L : K] .
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10© Extensions of Dedekind domains - Example

pO = Pe1
1 · · ·Per

r , ei: ramification index, fi =
[
O�Pi

: A�p
]

: inertia degree

1 # Calculate the ramification indices and inertia degrees
2 K.<y> = NumberField(x^2+1)
3 p=K.ideal (53)
4 fac=K.factor(p)
5 print("The ideals over ", p, " are:")
6 for P in fac:
7 print(P[0], "with ramification index e =", P[1], " and inertia

degree f =", P[0]. residue_class_degree ())
Output:

1 The ideals over Fractional ideal (53) are:
2 Fractional ideal (-2*y + 7) with ramification index e = 1 and inertia

degree f = 1
3 Fractional ideal (2*y + 7) with ramification index e = 1 and inertia

degree f = 1
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10© Extensions of Dedekind domains - Ramification

Definition

Let p ⊂ A be a prime ideal with the following factorization inO

pO = Pe1
1 · · ·P

er
r .

(i) p is said to split completely (or totally split) in L, if r = n = [L : K], i.e. ei = fi = 1 for all

i = 1, . . . , r.

(ii) p is called nonsplit if r = 1, i.e. there is just one prime ideal inO over p.

(iii) Pi is called unramified overA (orK) if ei = 1 and if the extensionO�Pi
/A�p is separable. Otherwise

Pi is called ramified. If ei > 1 and fi = 1 then Pi is called totally ramified.

(iv) p is called unramified if all Pi over p are unramified. Otherwise, p is called ramified. In particular, if p split

completely then it is unramified.

(v) The extension L/K is called unramified if all prime ideals p ⊂ A are unramified.
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