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Goal of these slides

Goal: Review the content of the course "Algebraic Number Theory" and do some examples in Sage
(sagemath.org & cocalc.com).

Overview of what we did:

Introduction & Basics of algebra
Integrality

Trace, Norm, and Discriminant
Dedekind domains

Lattices

Minkowski Theory

The class number

Fermat’s Last Theorem

Dirichlet’s Unit Theorem
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Extensions of Dedekind domains
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(1) Introduction & Basics of algebra - Prime as a sum of two squares

Theorem ( Theorem 1.3 ) J

A prime p > 3 can be written as a sum of two squares if and only ifp = 1 mod 4.

For example 13 = 23 4 32 = (2 —3i)(2 + 3i).
In Sage we create the number field X' = Q(7) and its ring of integers O = Z[i| by using the minimal
polynomial 2 + 1 of i:
i K.<y> = NumberField(x~2+1);
>0 = K.ring_of_integers () ;
The variable Y now is a primitive element (In this case y = =£17) of K. To factor 13 we consider the ideal (13):

1 I=0.ideal (13);
> I.factor ()
Output:

i (Fractional ideal (-3*y - 2)) * (Fractional ideal (2*y + 3))
Which gives (13) = (=3¢ — 2)(2i + 3)= (2 + 30)(2 — 31).
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(1) Introduction & Basics of algebra - Prime as a sum of two squares

To deal with primes in Sage one can use the following code, which gives the 550 + 1-th prime

i+ P = Primes ()
P.unrank (550)

Output:

1 4001

N

Naive way of finding the representation as a sum of two squares (just to see some code)

. p=4001

2 for a in range(p):

3 for b in range(l,a+1):

4 if a"2+b~2==p:

5 print(a," ",b)
Output:

i 49 40

Which means 4001 = 492 + 402.
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(1) Introduction & Basics of algebra - Factorization in Z[+/—5]

Exercise 5

We saw that in R = Z[+/—5] we have the non-unique factorization of 6 into irreducible elements as
6=2-3=(14++/-5)- (1 —+/—b).Find prime ideals P1, P2, p3 C R such that the ideals generated by

these elements can be written as

2) =92, (3)=pap3, (1+vV=5)=pipa, (1—v=5)=pips

and conclude (6) = p2paps.

We will use Sage to guess the ideals p1, P2, P3:

i K.<y> = NumberField(x~2+5); 0 = K.ring_of_integers();

> I=0.ideal (6) ;

s I.factor ()

Output:

i (Fractional ideal (2, y + 1))~2 * (Fractional ideal (3, y + 1)) * (
Fractional ideal (3, y + 2))

(y = £V —9)
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(1) Introduction & Basics of algebra - Factorization in Z[+/—5]

Want (6) = ppaps with (2) = p?, (3) = pabs, (1 + v=5) = pip2, (1 — vV=5) = p1ps.

+ I=0.ideal (6) ;
> I.factor ()
Output:
i (Fractional ideal (2, y + 1))~2 *x (Fractional ideal (3, y + 1)) x (
Fractional ideal (3, y + 2))

Check if the guess is correct:

1 pl=0.ideal(2,y+1); p2=0.ideal(3,y+1); p3=0.ideal (3,y+2);
> print("pl~2 = ",pl1-2)

s print ("p2*p3 = " ,p2*p3)
« print("pl*p2 = ",pl*p2)
s print ("pl*p3 = ",pl*p3)
Output:
1 pl~2 = Fractional ideal (2)
> p2*p3 = Fractional ideal (3)
s pl*xp2 = Fractional ideal (y + 1)

+ pl*p3 = Fractional ideal (-y + 1)
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(2) Integrality - Recall some notations

Definition ( Definition 2.1 & 2.6)

@ An algebraic number field K is a finite field extension of QQ, i.e. Q C K and dimg K < 00. The
elements of K are called algebraic numbers.

@ Anumber x € K of an algebraic number field is called an algebraic integer if it is the zero of a monic
polynomial with integer coefficients, i.e. there exist some a1, . . ., @y € Z with

4. ta,=0.

" 4+ a1z
We denote the set of all algebraic integers of a number field K by

Ok = {z € K | x algebraic integer }

This is called the ring of integers of I .
@ g is the integral closure of Z in K.
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(3) Trace, Norm, and Discriminant - Definition

2

Definition ( Definition 3.4 )

Let L/ K be a finite field extension with [L : K| = n. For x € L define the K -linear map on the n-dimensional
K -vector space L by

Ty: L — L
a— T o

Then we define the trace and norm of T by

Trp k() = Tr(Ty), Npjg(z) = det(Ty).

For K =Q,L =Q(i),andm = a + bi € Lwe haveTrL/K(m) = 2a and NL/K(m) =a® + b2

K.<y> = NumberField(x~2+1)
m=5+4x*xy
print ("The element ",m," has norm ",m.norm()," and trace ",m.trace())

Output:

The element 4%y + 5 has norm 41 and trace 10
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(3) Trace, Norm, and Discriminant - Calculation of Norm & Trace

Proposition ( Proposition 3.6 )

Let L/ K be a finite field extension with [L : K] = n and char(K) = 0 or | K| < co. Ifo; : L — K for

1 =1,...,n denotes the n embeddings of L in K, then forx € L we have
n
fo0) = [N = 0i(2)),
=1

Trp/p(x Zaz
N/ (z HUz

(Here fw ()\) is the characteristic polynomial of ;)
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3

orm, and Discriminant - Calculation of Norm & Trace

Let f(a) = a* —20% 4o+ 1 =[]} (¢ — 6;) and K = Q(6) = @[X]/f(X).
f(x)=x"4-2*xx"2+x+1
for r in f.roots():
print (r[0].n())
Output:
-1.49021612009995
-0.524888598656405
1.00755235937818 - 0.513115795597015%*1
1.00755235937818 + 0.513115795597015*1I

K.<y> = NumberField (f(x))

print ("K is a",K,"\nThe degree is ", K.degree())

[r,s]=K.signature ()

print ("K has",r," real embeddings and ",s, "pair of complex embeddings")
Output:

K is a Number Field in y with defining polynomial x~4 - 2%x"2 + x + 1
The degree is 4

K has 2 real embeddings and 1 pair of complex embeddings
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(3) Trace, Norm, and Discriminant - Calculation of Norm & Trace

@

Let f(a) = a* —20% 4o+ 1 =[]} (¢ — 6;) and K = Q(6) = @[X]/f(X).
We calculate the norm and trace of the element a = 02 —3:

# Using the built-in functions for norm and trace

a=y~2-3

print(a, " has norm ", a.norm(), " and trace ", a.trace())
Output:

y~2 - 3 has norm 13 and trace -8

# Calculating the norm&trace of y~2-3 by using the roots of f
p(x)=x"2-3
norm=1
trace=0
for r in f.roots():
norm*=p (r [0])
trace+=p(r[0])
print(a, " has norm ", norm.n(), " and trace ", trace.n())

Output:

y~2 - 3 has norm 13.0000000000000 and trace -8.00000000000000
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orm, and Discriminant - Calculation of Norm & Trace

Let f(z) =a* —22% + 2+ 1 =[[j_ (v — 0;) and K = Q(0) = Q[X]/f(X)'

Jj=1
We can also calculate the norm and trace of the element @ = 62 — 3 by using the embeddings created by sage:

# Calculating the norm&trace of y~2-3 by using the C-embeddings
embeddings=K.embeddings (CC) ;
a=y~2-3
norm=1
trace=0
for e in embeddings:
norm*=e (a)
trace+=e(a)
print (a, " has norm ", norm.n(), " and trace ", trace.n())
Output:
y°2 - 3 has norm 13.0000000000000 + 8.88178419700125e-16*I and trace
-8.00000000000000
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orm, and Discriminant - Discriminant: Definition

Definition ( Definition 3.8)

The discriminant of a basis o1, . . . , v, of L is defined by

d(ai,...,an) = det(d;(a;))?

Definition ( Definition 3.14 )
An integral basis of B over A is a system of elements w1, . . . ,w, € B, such that each b € B can be written
uniquely as a linear combination b = aqwy + * -+ + GnWwy, wWithaq, . . ., a, € A.

Definition ( Definition 3.18)

The discriminant of the number field K is defined by

dK = d(wl, 000 ,wn),

where w1, . . . , Wy is an integral basis of K/Q (This always exists)
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(3) Trace, Norm, and Discriminant - Calculating the discriminant

Letg(z) = 2% — 2 — 20 — 8 = [[1_; (x — ;) and K = Q(6) = Q[X]/Q(X)'

g(x)=x"3-x"2-2x-8
K.<y> = NumberField(g(x))

print ("K is a",K,"\nThe degree is ", K.degree())
[r,s]=K.signature ()

print ("K has",r," real embeddings and ",s, "pair of complex embeddings")

# Using the built in function for the discriminant & integral basis

print ("discriminant: ", K.discriminant ())

print ("integral basis: ",K.integral_basis())

Output:

K is a Number Field in y with defining polynomial x~3 - x72 - 2%x - 8

The degree is 3

K has 1 real embeddings and 1 pair of complex embeddings
discriminant: -503

integral basis: [1, 1/2xy~2 + 1/2xy, y~2]
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orm, and Discriminant - Calculating the discriminant

For an integral basis w1, . . . , Wy, the discriminant of K is

dg =d(wi,...,wp) = det(a,-(wj))2

+ # Calculating the discriminant by using an integral basis
> B=K.integral_basis ()

s embeddings=K.embeddings (CC)

« n=K.degree () ;

s mat=matrix.zero(CC,n,n)

7 for i in range(n):
8 for j in range(m):
9 mat [i,jl=embeddings [i](B[j])

i print (det (mat) ~2)
Output:

1+ -503.000000000000
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(4) Dedekind domains - Definition & Unique factorization of ideals

Definition ( Definition 4.2')

A domain R is called a Dedekind domain if
@ R is noetherian,
@ Risintegrally closed,

@ every non-zero prime ideal in IR is maximal.

Proposition ( Proposition 4.3 )

The ring of integers O of an algebraic number field K is a Dedekind domain.

Theorem ( Theorem 4.4 )

Let O be a Dedekind domain. Every ideal a of O, which differs from (0) and (1), admits a factorization

a=pr...pr

into nonzero prime ideals ; of O, which is unique up to the order of the factors.
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(4) Dedekind domains - Fractional ideals

Definition ( Definition 4.8)

Let O be a Dedekind domain with field of fractions K = Frac O.
@ A fractional ideal of K is a finitely generated O-submodule a # {0} of K.
@ Fractional ideals in O are called integral ideals of K .

@ Fora € K* the module (a) := aQ is a fractional ideal, called a fractional principal ideal.

Proposition ( Proposition 4.10 )

The fractional ideals form an abelian group, the ideal group J i of KX . The identity is (1) = O, and the inverse of
a fractional ideal a isa~! = {z € K | za C O}.

Definition ( Definition 4.13')
@ By Px we denote the subgroup of JJ - generated by all fractional principal ideals (@) = aO with a € K*.
@ The quotient Clg = JK/PK is called the (ideal) class group of K .
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(5) Lattices - Minkowski’s theorem

Let V' be an euclidean vector space. A discrete subgroup I" C V is called a lattice (Def. 5.1 & Prop. 5.3)
Definition ( Definition 5.6 )
Asubset X C V is called

@ centrally symmetric if for all z € X we also have —z € X.

@ convexifforallz,y € X theline segment {ty + (1 —t)z | 0 < ¢ < 1} is contained in X.

Theorem ( Minkowski’s lattice point theorem, Theorem 5.7 )

LetI" be a complete lattice in the n-dimensional euclidean vector space V' and X a centrally symmetric, convex
subset of V. Suppose that

vol(X) > 2" vol(T).

Then X contains at least one nonzero lattice pointy € T
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(6) Minkowski Theory - Minkowski space

Consider all embeddings 7; : KX — C at the same time and define the map
j: K — K¢ := H C
T

ar— j(a) = ((a))r = (ar)r .
Denote by F the complex conjugation acting on K¢ and define (z,y) = > _x,¥; forz,y € Kc.

Definition ( Definition 6.1)
Let K denote the F'-invariant subspace of K¢, i.e.

Kr={z¢€ Kc mod zz =%} .

The restriction of (, ) on KT gives a scalar product (, ) : Kg X Kr — R on the R-vector space K. The
euclidean vector space (KR, (, )) is called Minkowski space.
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(6) Minkowski Theory - Useful theorem

Proposition ( Proposition 6.3 )

Ifa # 0 is anideal of O, then " = j(a) is a complete lattice in K. Its fundamental mesh has volume

vol(T) = v/]dx]|[Ok : d].

Theorem ( Theorem 6.4 )

Leta # (0) be anideal of O, and let ¢ > 0 be real numbers for each embedding T € Homg (K, C), such
that c = ¢ and

HCT> <%>SM[0K:C¢].

Then there exists ana € a, a # 0 with |T(a)| < ¢; forallT € Homg(K,C).
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(7) The class number - Absolute norm & class number

Definition ( Definition 7.1)

Let a # (0) be an ideal in O . Then the absolute norm of a is

N(a) = [0k : a] = | O] .

Lemma ( Lemma 7.5 )

In every ideal a # (0) of O there exists ana € a, a # 0, with

| Ni/g(a)l < ) V0dk[N(a)

Theorem ( Theorem 7.6 )

The ideal class group Clg = JK/ Py s finite. Its order hy = | Clk | is called the class number of K .
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(7) The class number - Calculation

Let K = Q(v/—5) then O = Z[\/—5]. The class number is hr = 2 and we can compute the classes
as follows:
i K.<y> = NumberField (x~2+5)

2 CK = K.class_group();
s print (CK)

+ print ("generators: ",CK.gen())
s print("class number: ",K.class_number ())
Output:

1+ Class group of order 2 with structure C2 of Number Field in y with
defining polynomial x~2 + 5

> generators: Fractional ideal class (2, y + 1)

s class number: 2
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(7) The class number - Dedekind zeta function & Analytic class number formula

Definition ( Definition 7.9')

The Dedekind zeta function of a number field & is defined for z € C with Re(z) > 1 by

Theorem (Analytic class number formula, Theorem 7.11)

The residue of C K atz = 1 is given by

2"(2m)%h
lim(z — 1)Cre(2) = M,
z—1 wK |dK

where R is the regulator of K and w is the number of roots of unity in K .
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(7) The class number - Analytic class number formula for \/ —5)

2" (2m)®
lim(z — 1)Cx(z) = 2"(2m)°hic Rie
z—1 WK ‘dK

+ # Analytic class number formula

> K.<y> = NumberField (x~2+5)

3 DZ = K.zeta_function ()

+ [r,s]=K.signature ()

s RK=K.regulator ()

s wK=K.zeta_order ()

7 dK=K.discriminant ()

s hK=K.class_number ()

o print ("RHS:", 2~r*(2*pi.n()) ~s*hK*RK/(wK*sqrt (abs(dK.n()))))

1o print ("LHS: " ,(0.9999999-1)%*DZ(0.9999999))
Output:

+ RHS: 1.40496294620815

> LHS: 1.40496290972109
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Fermat'’s Last Theorem - Kummer’s result

Recall that for n. > 1 the Fermat equation is

n

x4yt =" ©)
We are interest in non-trivial solutions (Ty 2 75 0) for (1) with x, i, z € Z.

Definition ( Definition 8.2')

A prime D is called regular if p does not divide hQ(Cp)'

Theorem (Kummer 1850, Theorem 8.3)
@ Ifn = p > 3is aregular prime then there are no non-trivial solutions to (1).

@ A prime p is regular if and only if it does not divide the numerator of the Bernoulli numbers B}, for
k =2,4,...,p — 3. Here the Bernoulli numbers B}, are defined by their exponential generating series

Z _lX T X 1
k>0
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Fermat’s Last Theorem - Regular primes

Definition ( Definition 8.2')
A prime D is called regular if p does not divide hQ(Cp)' J

1+ # Check if a prime is regular by using the definition

> p=7

s K.<y> = CyclotomicField(p)

: classnumber = K.class_number ()

s print ("class number: ", classnumber)

6

7 if classnumber % p != O0:

8 print(p, " is regular")

9 else:

10 print(p, " is not regular")
Output:

1+ class number: 1

> 7 is regular

Notice that this becomes really (!) slow for larger primes p.
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Fermat’s Last Theorem - Regular primes with Kummer’s criteria

Kummer’s criteria: A prime p is regular if and only if it does not divide the numerator of the Bernoulli numbers
Bpfork=2,4,...,p—3

# Using Kummer’s criteria to check if a prime is regular
p=37

regular=True

for k in range(2,p-2):

if k % 2 ==0 and bermnoulli(k).numerator() % p == O0:
regular=False
break

if regular:

print(p, " is regular")
else:

print(p, " is not regular")
Output:
37 is not regular
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Fermat’s Last Theorem - Regular primes with Kummer’s criteria Il

+ # Give all non-regular primes up to a given bound
> P = Primes ()

+ for n in range (30):

5 p = P.unrank(n)

6 regular=True

7 for k in range(2,p-2):

8 if k % 2 ==0 and bermnoulli(k).numerator() % p == O:
9 regular=False

10 break

1"

12 if not regular:

13 print(p, " is not regular")

Output:
1+ 37 is not regular

> 59 is not regular
3 67 is not regular
+ 101 is not regular
5 103 is not regular
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(9) Dirichlet’s Unit Theorem - Statement

Denote by /4(K) the set of roots of unity contained in a number field /.

Theorem (Dirichlet’s unit theorem, Theorem 9.4 )

The unit group (’)IX( is given by a direct product of the cyclic group M(K ) and a free abelian group of rank
r+s—1,ie

[><< ~ M(K) @Zr—l—s—l .

This theorem implies that there exist units €1, . . . , €, witht = r 4+ s — 1, called the fundamental units, such

that any unit € € OIX( can be written as
e=Celt €t

with ¢ € p(K)andvy, ..., 1y € Z.
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(9) Dirichlet’s Unit Theorem - Example

There exist units €1, . . . , €, witht = 7 + s — 1, called the fundamental units, such that any unit € € O[X(
can be written as

e=Celt €t

with ¢ € p(K)andvy, ..., 1 € Z.

1 K.<y> = NumberField(x~2-7)
> UK = UnitGroup (K);
s print (UK) ;
« print("generators: ", UK.gens_values())
s zeta=UK.gens () [0]
s eps1=UK.gens () [1]
Output:
+ Unit group with structure C2 x Z of Number Field in y with defining
polynomial x°2 - 7
> generators: [-1, 3*y - 8]

Here we see that 8 + 3+/7 is the fundamental unit for K = Q (/7).
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Extensions of Dedekind domains - Notations

Setup in this section:
o A: Dedekind domain, K
o K =TFracA, T
A

e L/K: finite extension,

Q>

—
—
o O:integral closure of A in L.
Proposition (Proposition 10.1 & 10.2)
@ O is a Dedekind domain.
@ Letp be a prime ideal of A then pO # O.

A prime ideal 75 (O) of A decomposes in O in a unique way into a product of prime ideals:

PO =P P
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Extensions of Dedekind domains - Fundamental identity

A prime ideal p 75 (0) of A decomposes in (D in a unique way into a product of prime ideals:
pO =Pyt Pr. @

Definition (Definition 10.3)
@ The exponent ¢; in (2) is called the ramification index of *J3; over p.

@ The degree of the field extension
fi= |9, 44)

is called the inertia degree of ‘131 over .

Theorem (Fundamental identity, Definition 10.4)
r

Zeifi:n:[L:K].

=1

We have
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Extensions of Dedekind domains - Example

1

2

pO =P - P&, e;: ramification index, f; = [O/mZ : A/p} : inertia degree

# Calculate the ramification indices and inertia degrees

K.<y> = NumberField(x~2+1)

p=K.ideal (53)

fac=K.factor (p)

print ("The ideals over ", p, " are:")

for P in fac:
print (P[0], "with ramification index e =", P[1], " and inertia
degree f =", P[0].residue_class_degree())

Output:

The ideals over Fractional ideal (53) are:

Fractional ideal (-2%y + 7) with ramification index e = 1 and inertia
degree f = 1

Fractional ideal (2*y + 7) with ramification index e = 1 and inertia

degree f = 1

32/33



Extensions of Dedekind domains - Ramification

Definition

Letp C A be a prime ideal with the following factorization in O

pO =Py - B

@ pis said to split completely (or totally split) in L,ifr = n = [L : K|, ie. ¢; = f; = 1forall
1=1,...,7
@ piscalled nonsplitif 7 = 1, i.e. there is just one prime ideal in O over p.

@ ‘I3 is called unramified over A (or K) if ; = 1 and if the extension O/;Bi/A/p is separable. Otherwise
L3, is called ramified. If e; > 1 and f; = 1 then *J3; is called totally ramified.

@ pis called unramified if all $J3; over { are unramified. Otherwise, J is called ramified. In particular, if P split
completely then it is unramified.

@ The extension L/ K is called unramified if all prime ideals p C A are unramified.
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