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1⃝ Multiple zeta values - Definition

Definition

For k1 ≥ 2, k2, . . . , kr ≥ 1 we define the multiple zeta value (MZV)

ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 · · ·mkr

r

∈ R .

By r we denote its depth and k1 + · · ·+ kr will be called its weight.

Z : Q-algebra of MZVs

MZVs can also be written as iterated integrals, e.g.

ζ(2, 3) =

∫ 1

0

dt1
t1

∫ t1

0

dt2
1− t2

∫ t2

0

dt3
t3

∫ t3

0

dt4
t4

∫ t4

0

dt5
1− t5

.
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1⃝ Multiple zeta values - Harmonic & shuffle product

There are two different ways to express the product of MZV in terms of MZV.

Harmonic product (coming from the definition as iterated sums)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =
∑
m>0

1

mk1

∑
n>0

1

nk2

=
∑

m>n>0

1

mk1nk2
+

∑
n>m>0

1

mk1nk2
+

∑
m=n>0

1

mk1+k2

= ζ(k1, k2) + ζ(k2, k1) + ζ(k1 + k2) .

Shuffle product (coming from the expression as iterated integrals)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =
k1+k2−1∑

j=2

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
ζ(j, k1 + k2 − j) .
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1⃝ Multiple zeta values - Double shuffle relations

These two product expressions give various Q-linear relations between MZV.

Example

ζ(2) · ζ(3) harmonic
= ζ(2, 3) + ζ(3, 2) + ζ(5)

shuffle
= ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .

=⇒ 2ζ(3, 2) + 6ζ(4, 1)
double shuffle

= ζ(5) .

But there are more relations between MZV. e.g.:

ζ(2, 1) = ζ(3), ζ(2)2 =
5

2
ζ(4) .

These follow from regularizing the double shuffle relations:⇝extended double shuffle relations.
3 / 34



1⃝ Multiple zeta values - Connection to modular forms

Modular forms are holomorphic functions on the upper half plane H = {τ ∈ C | Im(τ) > 0}
satisfying certain functional equation (see bonus slides).

They appear in various areas of mathematics and play an essential role in number theory.

Remark

Multiple zeta values have various different (and partially still conjectured) connection to modular forms, e.g.

Broadhurst-Kreimer conjecture (see bonus slides),

Exotic relations.

Riemann zeta values also appear in the Fourier expansion of the Eisenstein series defined for even k ≥ 4 by

Gk(τ) =
1

2

∑
m,n∈Z

(m,n)̸=(0,0)

1

(mτ + n)k
= ζ(k) +

(−2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)q
n ,

where σk−1(n) =
∑

d|n d
k−1 is the divisor sum, τ ∈ H and q = e2πiτ .
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2⃝ Multiple Eisenstein series - Definition

For τ ∈ H we define on the lattice Zτ + Z the order ≻ by

m1τ + n1 ≻ m2τ + n2 :⇔ (m1 > m2) or (m1 = m2 and n1 > n2) .

Definition

For integers k1 ≥ 3, k2, . . . , kr ≥ 2, we define the multiple Eisenstein series by

Gk1,...,kr(τ) =
∑

λ1≻···≻λr≻0
λi∈Zτ+Z

1

λk1
1 · · ·λkr

r

.

These are holomorphic functions on the upper-half plane H, but in general they are not modular.

The product of multiple Eisenstein series can also be express by the harmonic product formula, e.g.

G4(τ) ·G3(τ) = G4,3(τ) +G3,4(τ) +G7(τ) .
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2⃝ Multiple Eisenstein series - The q-series g

Definition

For k1, . . . , kr ≥ 1 we define the q-series g(k1, . . . , kr) ∈ Q[[q]] by

g(k1, . . . , kr) =
∑

m1>···>mr>0
n1,...,nr>0

nk1−1
1

(k1 − 1)!
. . .

nkr−1
r

(kr − 1)!
qm1n1+···+mrnr .

In the case r = 1 these are the generating series of divisor-sums σk−1(n) =
∑

d|n n
k−1

g(k) =
∑

m,n>0

nk−1

(k − 1)!
qmn =

1

(k − 1)!

∑
n>0

σk−1(n)q
n ,

and they can be viewed as q-analogues of multiple zeta values, since for k1 ≥ 2, k2, . . . , kr ≥ 1 we have

lim
q→1

(1− q)k1+···+krg(k1, . . . , kr) = ζ(k1, . . . , kr) .
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2⃝ Multiple Eisenstein series - Fourier expansion

Theorem (Gangl-Kaneko-Zagier 2006 (r = 2), B. 2012 (r ≥ 2))

The multiple Eisenstein series Gk1,...,kr(τ) have a Fourier expansion of the form

Gk1,...,kr(τ) = ζ(k1, . . . , kr) +
∑
n>0

anq
n

(
q = e2πiτ

)
with an ∈ Z[2πi]. Moreover, they can be written explicitly as a Z[2πi]-linear combination of the q-series g.

Examples

Gk(τ) = ζ(k) + (−2πi)kg(k) ,

G3,2(τ) = ζ(3, 2) + 3ζ(3)(−2πi)2g(2) + 2ζ(2)(−2πi)3g(3) + (−2πi)5g(3, 2) .

(B.-Tasaka 2017): The Fourier expansion of G is related to the Goncharov coproduct (see bonus slides).
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2⃝ Multiple Eisenstein series - Fourier expansion - Multitangent functions

Definition

For k1, . . . , kr ≥ 1 with k1, kr ≥ 2 and τ ∈ H define the multitangent function by

Ψk1,...,kr(τ) :=
∑

n1>···>nr
ni∈Z

1

(τ + n1)k1 · · · (τ + nr)kr
.

Theorem (Bouillot 2011, B. 2012)

For k1, . . . , kr ≥ 1 with k1, kr ≥ 2 and K = k1 + · · ·+ kr the multitangent function can be written as

Ψk1,...,kr(τ) =

K∑
j=2

αK−jΨj(τ) , (αK−j ∈ ZK−j) .

We obtain the following "mould product" decomposition

Gk1,k2(τ) = ζ(k1, k2) +
∑
m>0

Ψk1(mτ)ζ(k2) +
∑
m>0

Ψk1,k2(mτ) +
∑

m1>m2>0

Ψk1(m1τ)Ψk2(m2τ) .
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Calculation of the Fourier expansion of multiple Eisenstein series 

Sums of multitangent functions

q-MZV (sums of monotangent functions)

Reduction multitangent to monotangent

MZV

Multiple Eisenstein series 

mould product 
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2⃝ Multiple Eisenstein series - Relations?

We saw that multiple zeta values satisfy various relations. For example,

ζ(2)2 =
5

2
ζ(4) ,

ζ(5) = 2ζ(3, 2) + 6ζ(4, 1) .

Question

Do multiple Eisenstein series satisfy these relations?

The first relation is clearly not satisfied, since setting Gk = (−2πi)−kGk we have

G2
2 =

5

2
G4 −

1

2
q
d

dq
G2 .

The second relation can not be satisfied since G4,1 is not defined.
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2⃝ Multiple Eisenstein series - Extended definitions

There are different ways to extend the definition of Gk1,...,kr to k1 ≥ 2, k2, . . . , kr ≥ 1
Formal double zeta space realization Gr,s (Gangl-Kaneko-Zagier, 2006)

Gk1 ·Gk2 + (δk1,2 + δk2,2)
G′

k1+k2−2

2(k1 + k2 − 2)
= Gk1,k2 +Gk2,k1 +Gk1+k2

=

k1+k2−1∑
j=2

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
Gj,k1+k2−j , (k1 + k2 ≥ 3) .

Shuffle regularized multiple Eisenstein series G�k1,...,kr (B.-Tasaka, 2017).

Harmonic regularized multiple Eisenstein series G∗
k1,...,kr

(B., 2019).

Observation & Motivating question

No version of these objects satisfy the double shuffle relations for all indices/weights.

The derivative is always somewhere as an extra term.

What is a "natural" family of relations for multiple Eisenstein series (and their derivatives)?

In the following we will propose an algebraic approach using generating series.
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3⃝ Algebraic setup - Quasi-shuffle product

L: countable set (set of letters).

⋄: commutative and associative product on QL.

word: monic monomial in the non-commutative polynomial ring Q⟨L⟩. (1: empty word)

Definition

The quasi-shuffle product ∗⋄ on Q⟨L⟩ is defined as the Q-bilinear product satisfying 1 ∗⋄ w = w ∗⋄ 1 = w
for any word w ∈ Q⟨L⟩ and

aw ∗⋄ bv = a(w ∗⋄ bv) + b(aw ∗⋄ v) + (a ⋄ b)(w ∗⋄ v)

for any letters a, b ∈ L and words w, v ∈ Q⟨L⟩.

Theorem (Hoffman)

(Q⟨L⟩, ∗⋄) is a commutative Q-algebra. Moreover, this algebra can be equipped with the structure of a Hopf

algebra with the coproduct given by
∆(w) =

∑
uv=w

u⊗ v .
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3⃝ Algebraic setup - Quasi-shuffle product examples

Harmonic product ∗: Lz = {zk | k ≥ 1} and zk1 ⋄ zk2 = zk1+k2 for all k1, k2 ≥ 1.

z2 ∗ z3 = z2z3 + z3z2 + z5 .

(Compare with: ζ(2)ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5) )

Shuffle product�: Lxy = {x, y} and a ⋄ b = 0 for a, b ∈ Lxy .

xy� xxy = xyxxy + 3xxyxy + 6xxxyy .

By identifying zk ↔
k−1︷ ︸︸ ︷

x · · ·x y we can also equip Q⟨Lz⟩ with the shuffle product, e.g.

z2 � z3 = z2z3 + 3z3z2 + 6z4z1 .

(Compare with: ζ(2)ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) )

Index shuffle product�: Lz = {zk | k ≥ 1} and zk1 ⋄ zk2 = 0 for all k1, k2 ≥ 1

z2�z3 = z2z3 + z3z2 .
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3⃝ Algebraic setup - Moulds

Let A be a Q-algebra.

Definition

1 A mould with values in A is a family Z = (Z(r))r≥0 with Z(r) ∈ A[[X1, . . . , Xr]].

2 For a mould Z with

Z(r)(X1, . . . , Xr) =
∑

k1,...,kr≥1

z(k1, . . . , kr)X
k1−1
1 . . . Xkr−1

r

we define its coefficient map as the Q-linear map given by φZ(1) = Z(0) and on the generators by

φZ : Q⟨Lz⟩ −→ A
zk1 . . . zkr 7−→ z(k1, . . . , kr) .
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3⃝ Algebraic setup - Symmetril

Definition

1 A mould Z is called ⋄-symmetril if its coefficient map φZ gives an algebra homomorphism

φZ : (Q⟨Lz⟩, ∗⋄) −→ A.

2 If ⋄ is given by zk1 ⋄ zk2 = zk1+k2 then we call a ⋄-symmetril mould symmetril. (↭ harmonic product)

3 If ⋄ is given by zk1 ⋄ zk2 = 0 then we call a ⋄-symmetril mould symmetral. (↭ index shuffle product)

Example: The mould of harmonic regularized multiple zeta values z, whose depth r part is defined by

z(X1, . . . , Xr) =
∑

k1,...,kr≥1

ζ∗(k1, . . . , kr)X
k1−1
1 . . . Xkr−1

r .

is symmetril.
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3⃝ Algebraic setup - Double shuffle relations

Let Z be a mould with Z(1)(X) =
∑

k≥1 z(k)X
k−1. Define the elements γZk ∈ A by

∞∑
k=0

γZk X
k := exp

( ∞∑
n=2

(−1)n

n
z(n)Xn

)
.

With this we define the mould Zγ by

Z(r)
γ (X1, . . . , Xr) =

r∑
j=0

γZj Z
(r−j)(X1 + · · ·+Xr−j , . . . , X1 +X2, X1).

Definition

We say a mould Z satisfies the double shuffle relations if Z is symmetril and Zγ is symmetral.
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3⃝ Algebraic setup - Moulds

Definition

We say a mould Z satisfies the double shuffle relations if Z is symmetril and Zγ is symmetral.

In lowest depth, this means that if Z satisfies the double shuffle relations, then

Z(X1)Z(X2) = Z(X1, X2) + Z(X2, X1) +
Z(X1)− Z(X2)

X1 −X2
,

Zγ(X1)Zγ(X2) = Zγ(X1, X2) + Zγ(X2, X1)

= Z(X1 +X2, X1) + Z(X1 +X2, X2) + γZ2 .

Theorem (Ecalle, Ihara-Kaneko-Zagier, Racinet, . . . )

The mould of harmonic regularized multiple zeta values z satisfies the double shuffle relations.
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3⃝ Algebraic setup - Rational solution to the double shuffle relations

Theorem (Drinfeld + Furusho, Racinet)

There exists a mould b with values in Q, with the following properties.

1 b satisfies the double shuffle relations.

2 For all r ≥ 1, b(−X1, . . . ,−Xr) = (−1)rb(X1, . . . , Xr).

3 In depth one b is given by

b(X) = −
∑
k≥2

Bk

2k!
Xk−1 =

∑
m≥1

ζ(2m)

(2πi)2m
X2m−1 .

This mould is not unique, but in the following, we will fix one choice of such a mould b with coefficients β, i.e.

b(X1, . . . , Xr) =
∑

k1,...,kr≥1

β(k1, . . . , kr)X
k1−1
1 . . . Xkr−1

r .
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3⃝ Algebraic setup - Bimoulds

Let A be a Q-algebra, define Lbi
z = {zkd | k ≥ 1, d ≥ 0} and write ∗ = ∗⋄ for zk1d1 ⋄ zk2d2 = zk1+k2

d1+d2
.

Definition

1 A bimould with values in A is a family B = (B(r))r≥0 with B(r) ∈ A[[X1, . . . , Xr, Y1, . . . , Yr]].

2 For a bimould B with

B

(
X1, . . . , Xr

Y1, . . . , Yr

)
=

∑
k1,...,kr≥1
d1,...,dr≥0

b

(
k1, . . . , kr
d1, . . . , dr

)
Xk1−1

1 · · ·Xkr−1
r

Y d1
1

d1!
· · · Y

dr
1

dr!

we define its coefficient map as the Q-linear map given by φB(1) = B(0) and on the generators by

φB : Q⟨Lbi
z ⟩ −→ A

zk1d1 . . . z
kr
dr

7−→ b

(
k1, . . . , kr
d1, . . . , dr

)
.
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3⃝ Algebraic setup - Bimoulds - Symmetril

Definition

1 A bimould B is called ⋄-symmetril if its coefficient map φB gives an algebra homomorphism

φB : (Q⟨Lbi
z ⟩, ∗⋄) −→ A.

2 If ⋄ is given by zk1d1 ⋄ zk2d2 = zk1+k2
d1+d2

then we call a ⋄-symmetril bimould symmetril.

If B is symmetril then it satisfies in lowest depth

B

(
X1

Y1

)
B

(
X2

Y2

)
= B

(
X1, X2

Y1, Y2

)
+B

(
X2, X1

Y2, Y1

)
+

B
(

X1

Y1+Y2

)
−B

(
X2

Y1+Y2

)
X1 −X2

,

which is similar to the relation satisfied by a symmetril mould Z

Z(X1)Z(X2) = Z(X1, X2) + Z(X2, X1) +
Z(X1)− Z(X2)

X1 −X2
.
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3⃝ Algebraic setup - Mould product

Let B and C two bimoulds with values in A. The mould product B × C is the bimould given by

(B × C)

(
X1, . . . , Xr

Y1, . . . , Yr

)
=

r∑
j=0

B

(
X1, . . . , Xj

Y1, . . . , Yj

)
C

(
Xj+1, . . . , Xr

Yj+1, . . . , Yr

)
.

Proposition

If B and C are ⋄-symmetril then B × C is ⋄-symmetril.

Proof: The coefficient map of B × C is the convolution product of φB and φC , i.e.

φB×C = m ◦ (φB ⊗ φC) ◦∆ ,

where m : A⊗A → A is the multiplication on A and ∆ is the deconcatination coproduct on Q⟨Lbi
z ⟩.
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3⃝ Algebraic setup - Swap

Definition

A bimould B is called swap invariant if for all r ≥ 1

B

(
X1, . . . , Xr

Y1, . . . , Yr

)
= B

(
Y1 + · · ·+ Yr, Y1 + · · ·+ Yr−1, . . . , Y1 + Y2, Y1

Xr, Xr−1 −Xr, . . . , X2 −X3, X1 −X2

)
X1

X2

Xr−1

Xr

Y1

Y2

Yr−1

Yr

conjugate

Y1 + · · ·+ Yr

Y1 + · · · + Yr−1

Y1 + Y2

Y1

Xr

Xr−1 −Xr

X2 −X3

X1 −X2

Example: If B is swap invariant we have B
(
X
Y

)
= B

(
Y
X

)
, which gives, for example, b

(
1
1

)
= b
(
2
0

)
.
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3⃝ Algebraic setup - From mould to bimould

Definition

For a mould Z , we define the bimould BZ by

BZ

(
X1, . . . , Xr

Y1, . . . , Yr

)
=

r∑
j=0

Zγ(Y1, . . . , Yj)Z(Xj+1, . . . , Xr) .

Recall that by definition

Z(r)
γ (Y1, . . . , Yr) =

r∑
j=0

γZ
j Z

(r−j)(Y1 + · · ·+ Yr−j , . . . , Y1 + Y2, Y1) .

Proposition

For any mould Z the bimould BZ is swap invariant,

If Z satisfies the double shuffle relations then BZ is symmetril.
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3⃝ Algebraic setup - Swap invariant & symmetril bimould

Z satisfies the double shuffle relations ⇒BZ is swap invariant & symmetril.

Question ("⇐" ?)

Does a swap invariant & symmetril bimould B give a mould Z which satisfies the double shuffle relations by setting

Z(X1, . . . , Xr) = B

(
X1, . . . , Xr

0, . . . , 0

)
?

No, not in general: Let B swap invariant & symmetril bimould. Then one can show that its coefficient satisfy

b

(
2

0

)2

=
5

2
b

(
4

0

)
−b

(
3

1

)
.

Compare this to

G2
2 =

5

2
G4−

1

2
q
d

dq
G2, and ζ(2)2 =

5

2
ζ(4) .

→ The coefficients of an swap invariant & symmetril bimould "behave like Eisenstein series".
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4⃝ Formal MES - Formal multiple Eisenstein series

(Rough) Let S be the ideal in (Q⟨Lbi
z ⟩, ∗) generated by the "swap invariance relations", e.g. z11 − z20 ∈ S.

Definition

The algebra of formal multiple Eisenstein series is defined by

Gf = Q⟨Lbi
z ⟩⧸S

and we denote the class of a word zk1d1 . . . z
kr
dr

by Gf

(
k1,...,kr
d1,...,dr

)
and set Gf(k1, . . . , kr) := Gf

(
k1,...,kr
0,...,0

)
.

Theorem (B.-Matthes-van-Ittersum (2022+))

The following map gives a derivation on Gf

∂Gf

(
k1, . . . , kr
d1, . . . , dr

)
=

r∑
j=1

kjGf

(
k1, . . . , kj + 1, . . . , kr
d1, . . . , dj + 1, . . . , dr

)
.

As an analogue of G2
2 =

5
2G4 − 1

2q
d
dqG2 we get Gf(2)

2 = 5
2Gf(4)− 1

2∂Gf(2).
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4⃝ Formal MES - Formal multiple Eisenstein series

Theorem (B.-Matthes-van-Ittersum (2022+))

1 The space of formal modular forms Mf = Q[Gf(4), Gf(6)] is isomorphic to the space of modular forms.

2 The space of formal quasi-modular forms M̃f = Q[Gf(2), Gf(4), Gf(6)] is isomorphic to the space of

quasi-modular forms as differential algebras.

3 There exist an ideal N , such that the algebra Z f = Gf
⧸N is isomorphic to the algebra of formal multiple

zeta values (defined by Racinet).

Conjecture (sl2-action)

There exist a unique derivation d on Gf such that the triple (∂,W, d) is an sl2-triple, i.e.

[W,∂] = 2∂, [W, d] = −2d, [d, ∂] = W ,

where W is the weight operator.

We have an explicit conjectured construction of the derivation d. This sl2-action would generalize the classical

sl2-action on the space of quasi-modular forms.
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5⃝ Combinatorial MES - Swap invariant & symmetril bimould

Theorem ((work in progress) B.-Burmester (2022+) )

There exist a swap invariant & symmetril bimould G with values in Q[[q]]

G

(
X1, . . . , Xr

Y1, . . . , Yr

)
=

∑
k1,...,kr≥1
d1,...,dr≥0

G

(
k1, . . . , kr
d1, . . . , dr

)
Xk1−1

1 · · ·Xkr−1
r

Y d1
1

d1!
· · · Y

dr
1

dr!

such that the coefficients in depth one are given by Eisenstein series and their derivatives (k > d ≥ 0)

G

(
k

d

)
=

(k − d− 1)!

(k − 1)!

(
q
d

dq

)d

Gk−d .

Define the combinatorial multiple Eisenstein series for k1, . . . , kr ≥ 1 by

G(k1, . . . , kr) := G

(
k1, . . . , kr
0, . . . , 0

)
.
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5⃝ Combinatorial MES - Swap invariant & symmetril bimould

Denote the space spanned by all combinatorial multiple Eisenstein by

G = Q+
〈
G(k1, . . . , kr) | r ≥ 1, k1, . . . , kr ≥ 1

〉
Q ⊂ Q[[q]] .

Theorem (B.-Burmester (2022+))

1 The space G is a Q-algebra which contains the space of (quasi-)modular forms with rational coefficients.

2 The combinatorial multiple Eisenstein series give an algebra homomorphism

G : (Q⟨Lz⟩, ∗) −→ G
w = zk1 . . . zkr 7−→ G(w) := G(k1, . . . , kr) .

3 G is closed under q d
dq and for any w ∈ Q⟨Lz⟩ we have

q
d

dq
G(w) = G(z2 ∗ w − z2 � w) .
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5⃝ Combinatorial MES - Swap invariant & symmetril bimould

The combinatorial multiple Eisenstein series have the form

G(k1, . . . , kr) = β(k1, . . . , kr) + products of β and g in lower depths + g(k1, . . . , kr) .

Example: G(3, 2) = β(3, 2) + 3β(3)g(2) + 2β(2)g(3) + g(3, 2)

Therefore they can be seen as an interpolation between the harmonic regularized multiple zeta values and the

rational solutions to double shuffle equations: For all k1, . . . , kr ≥ 1 we have

∗
lim
q→1

(1− q)k1+···+krG(k1, . . . , kr) = ζ∗(k1, . . . , kr)

lim
q→0

G(k1, . . . , kr) = β(k1, . . . , kr) .

Here lim∗
q→1 means that for k1 = 1 one needs to use a regularized limit (B.-van-Ittersum 2022+)
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Family of relations

Numbers Functions / q-series

Real / analytic
realization

(harmonic regularized)

Multiple zeta values

Rational / combinatorial
realization

Symmetril & Swap invariantDouble shuffle relations
Symmetril & Symmetral

Formal objects Formal multiple zeta values

Rational solution to double shuffle equations

Multiple Eisenstein series
(??? extension of)

Formal (bi-)multiple Eisenstein series

Combinatorial (bi-)multiple Eisenstein series



5⃝ Combinatorial MES - Construction of the bimould G

With Lm

(
X
Y

)
= eX+mY qm

1−eXqm
define the bimould g with values in Q[[q]] by

g

(
X1, . . . , Xr

Y1, . . . , Yr

)
=

∑
m1>···>mr>0

Lm1

(
X1

Y1

)
. . . Lmr

(
Xr

Yr

)
.

Theorem (B. 2013)

The bimould g is swap invariant.

The coefficients generalize the q-series g. This bimould is not symmetril, but satisfies, for example,

g

(
X1

Y1

)
g

(
X2

Y2

)
= g

(
X1, X2

Y1, Y2

)
+ g

(
X2, X1

Y2, Y1

)
+

g
(

X1

Y1+Y1

)
− g
(

X2

Y1+Y1

)
X1 −X2

+

(
2b(X2 −X1)−

1

2

)
g

(
X1

Y1 + Y1

)
+

(
2b(X1 −X2)−

1

2

)
g

(
X2

Y1 + Y1

)
.

Using the swap invariance of g, the above relationship between g and b and the fact that b satisfies the double

shuffle relation, one can given an explicit (but complicated) construction of G.
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Calculation of the Fourier expansion of multiple Eisenstein series 

Sums of multitangent functions

q-MZV (sums of monotangent functions)

Reduction multitangent to monotangent

MZV

Multiple Eisenstein series 

mould product 
decomposition



Construction of combinatorial multiple Eisenstein series 

Sums of multiple version of L: Symmetril bimould

The series g (sums of single version of L) 

Rational solution 
for double shuffle equations

Define multiple version of L by b and single version of L  

Symmetril & swap invariant 
bimould

Symmetril bimould

Mould product

Symmetril & swap invariant bimould



5⃝ Combinatorial MES - Construction of the bimould - Lm

Recall Lm

(
X
Y

)
= eX+mY qm

1−eXqm
and set b̃

(
X1,...,Xr

Y1,...,Yr

)
=
∑r

i=0
(−1)i

2ii!
b
( Xi+1,...,Xr

−Y1,...,−Yr−i

)
.

Definition

For m ≥ 1 we define the bimould Lm by defining Lm

(
X1,...,Xr

Y1,...,Yr

)
as

r∑
j=1

b

(
X1 −Xj , . . . , Xj−1 −Xj

Y1, . . . , Yj−1

)
Lm

(
Xj

Y1 + · · ·+ Yr

)
b̃

(
Xr −Xj , . . . , Xj+1 −Xj

Yr, . . . , Yj+1

)
.

The Lm

(
X
Y

)
can be seen as the generating series of the "(bi-)combinatorial version" of the monotangent

function Ψcomb
k (τ) = 1

(k−1)!

∑
d>0 d

k−1qd (defined by the Lipschitz formula instead of nested sum), since

∑
k≥1

Ψcomb
k (mτ)Xk−1 =

∑
k≥1

1

(k − 1)!

∑
d>0

dk−1qmdXk−1 =
∑
d>0

edXqmd =
eXqm

1− eXqm
= Lm

(
X

0

)
.

The Lm can then be seen as the generating series of (bi-)combinatorial version of the multitangent functions.
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5⃝ Combinatorial MES - Construction of the bimould - g∗

Lemma

Let Bm be a family of bimoulds which are ⋄-symmetril for all m ≥ 1. Then the bimould CM defined by

CM

(
X1, . . . , Xr

Y1, . . . , Yr

)
=

∑
1≤j≤r

0=r0<r1<···<rj−1<rj=r
M>m1>···>mj>0

j∏
i=1

Bmi

(
Xri−1+1, . . . , Xri

Yri−1+1, . . . , Yri

)

is ⋄-symmetril for all M ≥ 1. Proof: Show CM+1 = BM × CM and do induction on M .

Definition

We define the bimould g∗ by

g∗
(
X1, . . . , Xr

Y1, . . . , Yr

)
=

∑
1≤j≤r

0=r0<r1<···<rj−1<rj=r
m1>···>mj>0

j∏
i=1

Lmi

(
Xri−1+1, . . . , Xri

Yri−1+1, . . . , Yri

)
.

Lemma =⇒ if the Lm are symmetril for all m then g∗ is symmetril.
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5⃝ Combinatorial MES - Construction of the bimould - Definition

Definition (B.-Burmester (2022+))

The bimould of combinatorial (bi)-multiple Eisenstein series is defined by G = g∗ × b.

Definition (B.-Burmester (2022+))

For j ≥ 0 we define the bimould Gj = (G
(r)
j )r≥0 as follows. In the case j = 0 we set G0 = b and

G
(r)
j = 0 for r < j. If 1 ≤ j ≤ r we define

Gj

(
X1, . . . , Xr

Y1, . . . , Yr

)
=

∑
0=r0<r1<···<rj≤r

m1>···>mj>0

j∏
i=1

Lmi

(
Xri−1+1, . . . , Xri

Yri−1+1, . . . , Yri

)
b

(
Xrj+1, . . . , Xr

Yrj+1, . . . , Yr

)
.

Theorem (B.-Burmester (2022+))

The bimould Gj is swap invariant for any j ≥ 0 and we have G =
∑r

j=0Gj , i.e. G is swap invariant.
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5⃝ Combinatorial MES - Example of the bimould G

Let b = Bb denote the bimould coming from the mould b, which satisfies the double shuffle relation.

(i.e. the bimould b is symmetril and swap invariant)

Example: In depth one and two the bimould G is given by

G

(
X1

Y1

)
= b

(
X1

Y1

)
+ g

(
X1

Y1

)
,

G

(
X1, X2

Y1, Y2

)
= b

(
X1, X2

Y1, Y2

)
− b

(
X1 −X2

Y2

)
g

(
X1

Y1 + Y2

)
− 1

2
g

(
X1

Y1 + Y2

)
+ b

(
X2

Y2

)
g

(
X1

Y1

)
+ b

(
X1 −X2

Y1

)
g

(
X2

Y1 + Y2

)
+ g

(
X1, X2

Y1, Y2

)
.
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Open questions & future directions

There are still various open questions and possible research directions which are also suitable for bachelor,

master & PhD projects.

1 Higher level analogues (cf. Kaneko-Tasaka 2013, Yuan-Zhao 2016).

2 Analytic realization of the formal multiple Eisenstein series.

3 Consider additional structures from modular forms, e.g. Hecke operators.

4 Extension of the Kronecker realization (B.-Kühn-Matthes 2021) to higher depths.

5 Connection to the Goncharov coproduct (cf. B.-Tasaka 2017).

6 Possible definition of q-Associators.

7 Basis & Dimension formulas (cf. B.-Kühn 2020).

8 Interpretation of the Broadhurst-Kreimer conjecture & exotic relations in this setup.

9 Adaptation of this setup for finite multiple zeta values (cf. Kaneko-Zagier, B.-Tasaka-Takeyama 2018).

10 etc.

Thank you for your attention.
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Bonus - Connection to Goncharov coproduct

On the Q-algebra (Q⟨Lz⟩,�) one can define the Goncharov coproduct ∆G, which gives (Q⟨Lz⟩,�) the

structure of a Hopf algebra.

There exist explicit formulas for ∆G, e.g.

∆G(z3z2) = z3z2 ⊗ 1 + 3z3 ⊗ z2 + 2z2 ⊗ z3 + 1⊗ z3z2 .

Compare this to the Fourier expansion of G3,2:

G3,2 = ζ(3, 2) + 3ζ(3)(−2πi)2g(2) + 2ζ(2)(−2πi)3g(3) + (−2πi)5g(3, 2)︸ ︷︷ ︸
g̃(3,2):=

.

Theorem (B.-Tasaka 2017)

For k1, . . . , kr ≥ 2 we have Gk1,...,kr = (m ◦ (ζ ⊗ g̃) ◦∆G)(zk1 . . . zkr).

We also have

G(3, 2) = β(3, 2) + 3β(3)g(2) + 2β(2)g(3) + g(3, 2) = g(3, 2)− 1

12
g(3) ,

and by construction an analogue of the above theorem for combinatorial multiple Eisenstein series is expected.
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Bonus - Modular forms - Definition

Complex upper half plane: H =
{
x+ iy ∈ C | x, y ∈ R , y > 0

}
.

Definition

A holomorphic function f ∈ O(H) is called a modular form of weight k ∈ Z if it satisfies

f(τ + 1) = f(τ) ,

f(− 1
τ ) = τkf(τ) ,

for all τ ∈ H and if it has a Fourier expansion of the form

f(τ) =

∞∑
n=0

anq
n . (an ∈ C, q = e2πiτ )

Mk : space of all modular forms of weight k, M = ⊕k≥0Mk space of all modular forms.

The space of cusp forms of weight k is defined by

Sk =
{
f ∈ Mk | f =

∞∑
n=1

anq
n
}
= ker(projection to const. term) .
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Bonus - Broadhurst-Kreimer conjecture

grDr Zk : MZV of weight k and depth r modulo lower depths MZV.

Conjecture (Broadhurst-Kreimer, 1997)

The generating series of the dimensions of the weight- and depth-graded parts of multiple zeta values is given by∑
k,r≥0

dimQ
(
grDr Zk

)
XkY r =

1 + E(X)Y

1− O(X)Y + S(X)Y 2 − S(X)Y 4
,

where

E(X) =
X2

1−X2
, O(X) =

X3

1−X2
, S(X) =

X12

(1−X4)(1−X6)
=
∑
k≥0

dimSkX
k.

Observe that

1 + E(X)Y

1− O(X)Y + S(X)Y 2 − S(X)Y 4

= 1 + (E(X) + O(X))Y +
((

E(X) + O(X)
)
O(X)− S(X)

)
Y 2 + · · · .
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Bonus - Analogue for the double shuffle relation in small depth

As a consequence of the swap invariance the formal (and therefore also the combinatorial) bi-multiple Eisenstein
series satisfy for k1, k2 ≥ 1, d1, d2 ≥ 0

Gf

(
k1
d1

)
Gf

(
k2
d2

)
= Gf

(
k1, k2
d1, d2

)
+Gf

(
k2, k1
d2, d1

)
+Gf

(
k1 + k2
d1 + d2

)
=

∑
l1+l2=k1+k2
e1+e2=d1+d2
l1,l2≥1,e1,e2≥0

((
l1 − 1

k1 − 1

)(
d1
e1

)
(−1)d1−e1 +

(
l1 − 1

k2 − 1

)(
d2
e1

)
(−1)d2−e1

)
Gf

(
l1, l2
e1, e2

)

+
d1!d2!

(d1 + d2 + 1)!

(
k1 + k2 − 2

k1 − 1

)
Gf

(
k1 + k2 − 1

d1 + d2 + 1

)
.

Example The k1 = 2, k2 = 3, d1 = d2 = 0 case gives

Gf(2)Gf(3) = Gf(2, 3) +Gf(3, 2) +Gf(5)

= Gf(2, 3) + 3Gf(3, 2) + 6Gf(4, 1) + ∂Gf(3) .

Compare this to ζ(2) · ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1).
34 / 34


