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1© MZV & DSH - Definition

Definition

For k1 ≥ 2, k2, . . . , kr ≥ 1 define the multiple zeta value (MZV)

ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 · · ·m

kr
r

∈ R .

By r we denote its depth and k1 + · · ·+ kr will be called its weight.

Z : Q-algebra of MZVs

Zk : Q-vector space of MZVs of weight k.

MZVs can also be written as iterated integrals, e.g.

ζ(2, 3) =

∫ 1

0

dt1
t1

∫ t1

0

dt2
1− t2

∫ t2

0

dt3
t3

∫ t3

0

dt4
t4

∫ t4

0

dt5
1− t5

.
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1© MZV & DSH - Harmonic & shuffle product

There are two different ways to express the product of MZV in terms of MZV.

Harmonic product (coming from the definition as iterated sums)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =
∑
m>0

1

mk1

∑
n>0

1

nk2

=
∑

m>n>0

1

mk1nk2
+

∑
n>m>0

1

mk1nk2
+

∑
m=n>0

1

mk1+k2

= ζ(k1, k2) + ζ(k2, k1) + ζ(k1 + k2) .

Shuffle product (coming from the expression as iterated integrals)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =

k1+k2−1∑
j=2

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
ζ(j, k1 + k2 − j) .
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1© MZV & DSH - Double shuffle relations

These two product expressions give various Q-linear relations between MZV.

Example

ζ(2) · ζ(3)
harmonic

= ζ(2, 3) + ζ(3, 2) + ζ(5)
shuffle
= ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .

=⇒ 2ζ(3, 2) + 6ζ(4, 1)
double shuffle

= ζ(5) .

But there are more relations between MZV. e.g.:∑
m>n>0

1

m2n
= ζ(2, 1) = ζ(3) =

∑
m>0

1

m3
.

These follow from regularizing the double shuffle relations

 extended double shuffle relations.
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1© MZV & DSH - Relations conjectures

Conjecture

All relations among MZVs are consequences of the extended double shuffle relations.

Conjecture

The spaceZ is graded by weight, i.e.

Z =
⊕
k≥0
Zk .

There are various different families of relations which conjecturally give all

relations among MZV.

Not for all of them it is known if they are equivalent to the extended double shuffle

relations.

4 / 42



Overview of relations among MZV For details see:
B. “Multiple zeta values & modular forms”, Lecture notes



1© MZV & DSH - Dimension conjectures

Define the numbers dk ∈ Z≥0 by∑
k≥0

dkX
k =

1

1−X2 −X3
.

Conjecture (Zagier, 1994)

We have dimQZk = dk for all k ≥ 0.

weight k 0 1 2 3 4 5 6 7 8 9 10 11 12

# of adm. ind. 1 0 1 2 4 8 16 32 64 128 256 512 1024

# of relations
?
= 0 0 0 1 3 6 14 29 60 123 249 503 1012

dk 1 0 1 1 1 2 2 3 4 5 7 9 12

Theorem (Terasoma (2002), Deligne–Goncharov (2005))

For all k ≥ 0 we have dimQZk ≤ dk .
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2© Modular forms - Definition

Complex upper half plane: H =
{
x+ iy ∈ C | x, y ∈ R , y > 0

}
.

Definition

A holomorphic function f ∈ O(H) is called a modular form of weight k ∈ Z if it satisfies

f(τ + 1) = f(τ) ,

f(− 1
τ ) = τkf(τ) ,

for all τ ∈ H and if it has a Fourier expansion of the form

f(τ) =
∞∑
n=0

anq
n . (an ∈ C, q = e2πiτ )

Mk : space of all modular forms of weight k.

The space of cusp forms of weight k is defined by

Sk =
{
f ∈Mk | f =

∞∑
n=1

anq
n
}
.
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2© Modular forms - Eisenstein series

For even k ≥ 4 the Eisenstein series are defined by

Gk(τ) =
1

2

∑
m,n∈Z

(m,n) 6=(0,0)

1

(mτ + n)k
.

These have a Fourier expansion of the form

Gk(τ) = ζ(k) +
(−2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn ,

where σk−1(n) =
∑

d|n d
k−1 is the divisor sum.

Proposition

For every even k ≥ 4 we haveGk ∈Mk and

M =

∞⊕
k=0

Mk = C[G4, G6] .
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2© Modular forms - Quasi-modular forms

Are derivatives of modular forms again modular forms?... No

Define the Eisenstein series of weight two by

G2(τ) = ζ(2) + (−2πi)2
∞∑
n=1

σ1(n)qn ,

and the space of quasi-modular forms by

M̃ = C[G2, G4, G6] .

Proposition

The space M̃ is the "smallest" ring with the following properties:

It contains the ring of modular formsM.

It it closed under d
dτ .
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2© Modular forms - Cusp forms

The first non-trivial cusp form is the discriminant function ∆

∆(τ) = q

∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 − 1472q4 + . . . ,

which is a cusp form of weight 12.

Theorem

For k ≥ 0 the mapMk → Sk+12 given by f 7→ ∆ · f is an isomorphism of

C-vector spaces.

The generating series for the dimension of cusp forms of weight k is given by

S(X) =
∑
k≥0

dimC SkXk = X12
∑
k≥0

dimCMkX
k =

X12

(1−X4)(1−X6)
.
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1© 2© MZV & Modular forms - Broadhurst-Kreimer conjecture

grDr Zk : MZV of weight k and depth r modulo lower depths MZV.

Conjecture (Broadhurst-Kreimer, 1997)

The generating series of the dimensions of the weight- and depth-graded parts of multiple

zeta values is given by∑
k,r≥0

dimQ
(
grDr Zk

)
XkY r =

1 + E(X)Y

1− O(X)Y + S(X)Y 2 − S(X)Y 4
,

where

E(X) =
X2

1−X2
, O(X) =

X3

1−X2
, S(X) =

X12

(1−X4)(1−X6)
.

Observe that

1 + E(X)Y

1− O(X)Y + S(X)Y 2 − S(X)Y 4

= 1 + (E(X) + O(X))Y +
((

E(X) + O(X)
)
O(X)− S(X)

)
Y 2 + · · · .
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3© Multiple Eisenstein series - An order on lattices

Let τ ∈ H. We define an order� on the lattice Zτ + Z by setting

λ1 � λ2 :⇔ λ1 − λ2 ∈ P

for λ1, λ2 ∈ Zτ + Z and the following set of positive lattice points

P := {mτ + n ∈ Zτ + Z | m > 0 ∨ (m = 0 ∧ n > 0)} = U ∪R .

m

n

In other words: λ1 � λ2 iff λ1 is above or on the right of λ2.
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3© Multiple Eisenstein series - Multiple Eisenstein series

Definition

For integers k1 ≥ 3, k2, . . . , kr ≥ 2, we define the multiple Eisenstein series by

Gk1,...,kr(τ) =
∑

λ1�···�λr�0
λi∈Zτ+Z

1

λk11 · · ·λ
kr
r

.

It is easy to see that these are holomorphic functions in the upper half plane and that

they fulfill the harmonic product, i.e. it is for example

G4(τ) ·G3(τ) = G4,3(τ) +G3,4(τ) +G7(τ) .
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3© Multiple Eisenstein series - Classical Eisenstein series

In depth one we have for k ≥ 3

Gk(τ) =
∑

λ∈Zτ+Z
λ�0

1

λk
=

∑
m>0

∨ (m=0∧n>0)

1

(mτ + n)k
= ζ(k) +

∑
m>0

∑
n∈Z

1

(mτ + n)k

By the Lipschitz summation formula we get for k ≥ 2 (q = e2πiτ )

∑
n∈Z

1

(τ + n)k
=

(−2πi)k

(k − 1)!

∑
d>0

dk−1qd .

This gives

Gk(τ) = ζ(k) +
(−2πi)k

(k − 1)!

∑
m>0
d>0

dk−1qmd = ζ(k) +
(−2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn .
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3© Multiple Eisenstein series - Multiple version of g

What is a multiple version of the divisor sum?

g(k) =
1

(k − 1)!

∑
m>0
d>0

dk−1qmd =
1

(k − 1)!

∞∑
n=1

σk−1(n)qn .
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3© Multiple Eisenstein series - Multiple version of g & q-MZV

Definition

For k1, . . . kr ≥ 1 we define the q-series g(k1, . . . , kr) ∈ Q[[q]] by

g(k1, . . . , kr) =
∑

m1>···>mr>0
d1,...,dr>0

dk1−11

(k1 − 1)!
. . .

dkr−1r

(kr − 1)!
qm1d1+···+mrdr .

These q-series have a nice combinatorial interpretation

g(k1, . . . , kr) =
∑
n>0

( )
qn .

Proposition (g are q-analogues of MZVs)

For k1 ≥ 2, k2 . . . , kr ≥ 1 we have

lim
q→1

(1− q)k1+···+krg(k1, . . . , kr) = ζ(k1, . . . , kr) .
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3© Multiple Eisenstein series - Fourier expansion

Theorem (Gangl-Kaneko-Zagier 2006 (r = 2), B. 2012 (r ≥ 2))

The multiple Eisenstein seriesGk1,...,kr(τ) have a Fourier expansion of the form

Gk1,...,kr(τ) = ζ(k1, . . . , kr) +
∑
n>0

anq
n

(
q = e2πiτ

)
and they can be written explicitly as aZ[2πi]-linear combination of q-analogues of multiple

zeta values g. In particular, an ∈ Z[2πi].

Examples

Gk(τ) = ζ(k) + (−2πi)kg(k) ,

G3,2(q) = ζ(3, 2) + 3ζ(3)(−2πi)2g(2) + 2ζ(2)(−2πi)3g(3) + (−2πi)5g(3, 2) .
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3© Multiple Eisenstein series - Do they satisfy double shuffle?

We saw the following example:

Example

ζ(2) · ζ(3)
harmonic

= ζ(2, 3) + ζ(3, 2) + ζ(5)
shuffle
= ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .

=⇒ 2ζ(3, 2) + 6ζ(4, 1)
double shuffle

= ζ(5) .

Question

Are these relations also satisfied by the multiple Eisenstein series?

Problem: No definition ofG2,3 andG4,1!
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3© Multiple Eisenstein series - Do they satisfy double shuffle?

There are different ways to extend the definition ofGk1,...,kr to k1, . . . , kr ≥ 1

Formal double zeta space realizationGr,s (Gangl-Kaneko-Zagier, 2006)

Gk1 ·Gk2 + (δk1,2 + δk2,2)
G′k1+k2−2

2(k1 + k2 − 2)
= Gk1,k2 +Gk2,k1 +Gk1+k2

=

k1+k2−1∑
j=2

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
Gj,k1+k2−j , (k1 + k2 ≥ 3) .

Finite double shuffle versionGr,s (Kaneko, 2007).

Shuffle regularized multiple Eisenstein seriesG�k1,...,kr (B.-Tasaka, 2017).

Harmonic regularized multiple Eisenstein seriesG∗k1,...,kr (B., 2019).

Observation

No version of these objects satisfy the double shuffle relations for all indices/weights.

The derivative is always somewhere as an extra term.
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3© Multiple Eisenstein series - Of course, they do not satisfy dsh...

Theorem (Gangl-Kaneko-Zagier + ε)

For all k ≥ 0 there exists a basis of Sk given by explicit linear combinations ofGodd,odd.

Corollary (taking constant term)

For each cusp form there is a relation among ζ(odd, odd).

Example There exist a c ∈ C with

c∆ = G3,9 −
23825

5197
G5,7 −

41431

10394
G7,5 +

360

5197
G9,3 +G11,1 ,

which implies the relation

0 = ζ(3, 9)− 23825

5197
ζ(5, 7)− 41431

10394
ζ(7, 5) +

360

5197
ζ(9, 3) + ζ(11, 1) .

Conjecturally these are the only relations among ζ(odd, odd)
 Explanation of O(X)O(X)− S(X) in the Broadhurst-Kreimer conjecture.
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4© Extension of the DSH relations - General Idea

Questions

What are the relations satisfied by multiple Eisenstein series?

Can we formalize these relation?

The double shuffle relations can also be stated in terms of generating series:

Z∗(X1, . . . , Xr) =
∑

k1,...,kr≥1
ζ∗(k1, . . . , kr)X

k1−1
1 . . . Xkr−1

r

Then the extended double shuffle relations in lowest depths can be written as

Z∗(X1)Z
∗(X2) = Z∗(X1, X2) + Z∗(X2, X1) +

Z∗(X1)− Z∗(X2)

X1 −X2

= Z∗(X1 +X2, X2) + Z∗(X1 +X2, X1) + ζ(2) .

20 / 42



4© Extension of the DSH relations - Formal double shuffle relations

A: Q-algebra.

For zk1,...,kr ∈ A for k1, . . . , kr ≥ 1 we write

Z(X1, . . . , Xr) =
∑

k1,...,kr≥1
zk1,...,krX

k1−1
1 . . . Xkr−1

r .

A collection Z = (Z(X1, . . . , Xr))r≥1 will be called a mould.

Definition

A mould Z satisfies the double shuffle relations (in depth 2) if

Z(X1)Z(X2) = Z(X1, X2) + Z(X2, X1) +
Z(X1)− Z(X2)

X1 −X2

= Z(X1 +X2, X1) + Z(X1 +X2, X2) + z2 .
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4© Extension of the DSH relations - Known solutions

A = R: Harmonic regularized multiple zeta values

zk1,...,kr = ζ∗(k1, . . . , kr) .

A = Q: Explicit solutions are known up to depth 3 (Brown, Ecalle,

Gangl-Kaneko-Zagier, Tasaka). In depth 1 they are all given by

zk =

{
−Bk

2k! = ζ(k)
(2πi)k

, k even

0 , k odd
.

A = Q: Solution exist in all depths (Drinfel’d + Furusho, Racinet).
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4© Extension of the DSH relations - General Idea

General idea

Include also (arbitrary) derivatives as objects.

Instead of series Z(X1, . . . , Xr) we will consider generating series with two types

of variablesXi and Yi.

Roughly: Xi: weight, Yi: derivative.

In the case Yi = 0, we get back our original story.

A: Q-algebra

B

(
X1, . . . , Xr

Y1, . . . , Yr

)
∈ A[[X1, Y1, . . . , Xr, Yr]].

Definition

A collectionB =
(
B
(
X1,...,Xr

Y1,...,Yr

))
r≥1

will be called a bimould.
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4© Extension of the DSH relations - Symmetril

Definition

A bimouldB is symmetril (up to depth 2), if

B

(
X1

Y1

)
B

(
X2

Y2

)
= B

(
X1, X2

Y1, Y2

)
+B

(
X2, X1

Y2, Y1

)
+
B
(

X1

Y1+Y2

)
−B

(
X2

Y1+Y2

)
X1 −X2

.

Remark

Can be written down explicitly in arbitrary depth.

This corresponds to the harmonic product of MZV, i.e. compare it to

Z(X1)Z(X2) = Z(X1, X2) + Z(X2, X1) +
Z(X1)− Z(X2)

X1 −X2
.
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4© Extension of the DSH relations - Swap

Definition

A bimouldB is called swap invariant if

B

(
X1, . . . , Xr

Y1, . . . , Yr

)
= B

(
Y1 + · · ·+ Yr, Y1 + · · ·+ Yr−1, . . . , Y1 + Y2, Y1

Xr, Xr−1 −Xr, . . . , X2 −X3, X1 −X2

)
.

B

(
X1

Y1

)
SW
= B

(
Y1
X1

)
, B

(
X1, X2

Y1, Y2

)
SW
= B

(
Y1 + Y2, Y1
X2, X1 −X2

)
.

25 / 42



4© Extension of the DSH relations - q-shuffle

Recall symmetrility and swap in low depth

B

(
X1

Y1

)
SW
= B

(
Y1
X1

)
, B

(
X1, X2

Y1, Y2

)
SW
= B

(
Y1 + Y2, Y1
X2, X1 −X2

)
,

B

(
X1

Y1

)
B

(
X2

Y2

)
IL
= B

(
X1, X2

Y1, Y2

)
+B

(
X2, X1

Y2, Y1

)
+
B
(

X1

Y1+Y2

)
−B

(
X2

Y1+Y2

)
X1 −X2

.

Definition

Swap + Symmetril + Swap = q-shuffle

B

(
X1

Y1

)
B

(
X2

Y2

)
SW
= B

(
Y1
X1

)
B

(
Y2
X2

)
IL
= B

(
Y1, Y2
X1, X2

)
+B

(
Y2, Y1
X2, X1

)
+
B
(

Y1

X1+X2

)
−B

(
Y2

X1+X2

)
Y1 − Y2

SW
= B

(
X1 +X2, X1

Y2, Y1 − Y2

)
+B

(
X1 +X2, X2

Y1, Y2 − Y1

)
+
B
(
X1+X2

Y1

)
−B

(
X1+X2

Y2

)
Y1 − Y2

.
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4© Extension of the DSH relations - q-double shuffle

Definition

A bimould satisfies q-double shuffle (in depth 2) if

B

(
X1

Y1

)
B

(
X2

Y2

)
= B

(
X1, X2

Y1, Y2

)
+B

(
X2, X1

Y2, Y1

)
+
B
(

X1

Y1+Y2

)
−B

(
X2

Y1+Y2

)
X1 −X2

= B

(
X1 +X2, X1

Y2, Y1 − Y2

)
+B

(
X1 +X2, X2

Y1, Y2 − Y1

)
+
B
(
X1+X2

Y1

)
−B

(
X1+X2

Y2

)
Y1 − Y2

,

i.e. B is symmetril and satisfies the q-shuffle product formula.

Clearly: Symmetril + Swap invariant =⇒ q-double shuffle.

Compare this to the double shuffle relations

Z(X1)Z(X2) = Z(X1, X2) + Z(X2, X1) +
Z(X1)− Z(X2)

X1 −X2

= Z(X1 +X2, X1) + Z(X1 +X2, X2) + z2 .
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4© Extension of the DSH relations - "Constant function" Sol. to dsh

Solution to q-dsh => solution to dsh

Proposition

LetB be symmetril and swap invariant with d
dX

d
dY B

(
X
Y

)
= 0. Then

Z(X) = B

(
X

0

)
, Z(X1, X2) = B

(
X1, X2

0, 0

)
satisfies the double shuffle relations.

Proof:

B
(
X1+X2

Y1

)
−B

(
X1+X2

Y2

)
Y1 − Y2 |Y1=Y2=0

=
∑
k≥1

b

(
k

1

)
(X1 +X2)

k−1

= b

(
1

1

)
SW
= b

(
2

0

)
= z2 .

Interpretation: "When the derivative vanishes (constant function) then we obtain a

solution to classical dsh (equations for numbers)".
28 / 42



4© Extension of the DSH relations - Sol. to dsh Sol. to q-dsh

Theorem (B.-Kühn-Matthes, 2020+)

Let Z satisfy the double shuffle relations (in all depths), then there exists an explicit

construction of a symmetril and swap invariant bimouldB.

For example, in lowest depth the bimould

B

(
X1

Y1

)
= Z(X1) + Z(Y1) ,

B

(
X1, X2

Y1, Y2

)
= Z(X1, X2) + Z(Y1 + Y2, Y1) + Z(X2)Z(Y1) +

1

2
z2

is symmetril and swap invariant

Interpretation: "Numbers can be viewed as constant functions".
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4© Extension of the DSH relations - Combinatorial MES

Theorem (B.-Kühn-Matthes 2020+, B.-Burmester 2020+)

There exist a symmetril and swap invariant bimould G (up to depth 3) which in depth one is

given by the generating series of derivatives of Eisenstein series.

Remark

This setup gives combinatorial proofs of classical identities (e.g. Ramanujan Diff.eq.).

The construction of this bimould is inspired by the Fourier expansion of multiple

Eisenstein series.

The bimould G can be written down explicitly in terms of rational solutions to the

classical double shuffle equations and a bi-variant of the q-series g.

We have a conjectured construction for all depths (j.w. A. Burmester).
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4© Extension of the DSH relations - Combinatorial MES

Definition

We define the combinatorial multiple Eisenstein seriesG in depth≤ 2 by

G

(
X

Y

)
=:
∑
k≥1
d≥0

G

(
k

d

)
Xk−1Y

d

d!
,

G

(
X1, X2

Y1, Y2

)
=:

∑
k1,k2≥1
d1,d2≥0

G

(
k1, k2
d1, d2

)
Xk1−1

1 Xk2−1
2

Y d1
1

d1!

Y d2
2

d2!
.

In depth oneG
(
k
d

)
is basically the d-th derivative ofGk−d.

In depth two theG
(
k1,k2
0,0

)
are (almost) the double Eisenstein series.

The symmetrility G of gives

G

(
k1
d1

)
G

(
k2
d2

)
= G

(
k1, k2
d1, d2

)
+G

(
k2, k1
d2, d1

)
+G

(
k1 + k2
d1 + d2

)
.
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4© Extension of the DSH relations - The space of CMES

Definition

Space of double combinatorial multiple Eisenstein series of weightK ≥ 1:

DK =

〈
G

(
k

d

)
, G

(
k1, k2
d1, d2

) ∣∣∣∣ k+d=k1+k2+d1+d2=Kk,k1,k2≥1, d,d1,d2≥0

〉
Q

Proposition

q
d

dq
G

(
X1

Y1

)
=

d

dX1

d

dY1
G

(
X1

Y1

)
,

q
d

dq
G

(
X1, X2

Y1, Y2

)
=

(
d

dX1

d

dY1
+

d

dX2

d

dY2

)
G

(
X1, X2

Y1, Y2

)
.

Corollary

Combinatorial multiple Eisenstein series are closed under q ddq . In particular

q
d

dq
DK ⊂ DK+2 .
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4© Extension of the DSH relations - The space of CMES

DK =

〈
G

(
k

d

)
, G

(
k1, k2
d1, d2

) ∣∣∣∣ k+d=k1+k2+d1+d2=Kk,k1,k2≥1, d,d1,d2≥0

〉
Q

D0
K =

〈
G

(
k

0

)
, G

(
k1, k2
0, 0

)
∈ DK

〉
Q

Proposition

DK contains the space of quasi modular forms Q[G̃2, G̃4, G̃6]K of weightK .

D0
K contains the space of modular forms Q[G̃4, G̃6]K of weightK

Numerical computer calculation give:

k 1 2 3 4 5 6 7 8

dimDK
?
= 1 2 3 5 7 11 14 ..

dimD0
K

?
= 1 2 3 3 4 4 5 5

# generators of DK 1 3 7 14 25 41 63 92
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5© Bonus - Basis conjecture

Conjecture (Hoffman, 1997)

For k ≥ 0 the multiple zeta values

{ζ(k1, . . . , kr) | r ≥ 0, k1 + · · ·+ kr = k, k1, . . . , kr ∈ {2, 3}}

form a basis ofZk .

ζ(2n) ∈ π2nQ, ζ(2, . . . , 2) =
π2n

(2n+ 1)!
, ζ(5) =

6

5
ζ(2, 3) +

4

5
ζ(3, 2) .

Theorem (Brown, 2012)

For all k ≥ 0 we have

Zk = 〈ζ(k1, . . . , kr) | r ≥ 0, k1 + · · ·+ kr = k, k1, . . . , kr ∈ {2, 3}〉Q .
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5© Bonus - Symmetril in depth 3

Definition

A bimouldB is symmetril (up to depth 3), if

B

(
X1

Y1

)
B

(
X2

Y2

)
= B

(
X1, X2

Y1, Y2

)
+B

(
X2, X1

Y2, Y1

)
+
B
(

X1

Y1+Y2

)
−B

(
X2

Y1+Y2

)
X1 −X2

,

B

(
X1

Y1

)
B

(
X2, X3

Y2, Y3

)
= B

(
X1, X2, X3

Y1, Y2, Y3

)
+B

(
X2, X1, X3

Y2, Y1, Y3

)
+B

(
X2, X3, X1

Y2, Y3, Y1

)
+
B
(
X1,X3

Y1+Y2,Y3

)
−B

(
X2,X3

Y1+Y2,Y3

)
X1 −X2

+
B
(
X2,X1

Y2,Y1+Y3

)
−B

(
X2,X3

Y2,Y1+Y3

)
X1 −X3

.
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5© Bonus - The bimould g

Define form ≥ 1 the series

Lm

(
X

Y

)
=
eX+mY qm

1− eXqm
=
∑
n≥1

enX+mY qmn .

Definition

We define the bimould g for all depth r ≥ 1 by

g

(
X1, . . . , Xr

Y1, . . . , Yr

)
=

∑
m1>···>mr>0

Lm1

(
X1

Y1

)
. . . Lmr

(
Xr

Yr

)
.

Proposition

The bimould g is swap invariant.
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5© Bonus - The bimould g

Example: Swap invariance of g in depth 2

g

(
X1, X2

Y1, Y2

)
=

∑
m1>m2>0

Lm1

(
X1

Y1

)
Lm2

(
X2

Y2

)
=

∑
m1>m2>0
n1,n2>0

en1X1+n2X2+m1Y1+m2Y2qm1n1+m2n2 = (?)

Change of variables! swap of variables{
m1 = m′1 +m′2 , m2 = m′1
n1 = n′2 , n2 = n′1 − n′2

}
=⇒ m1n1 +m2n2 = m′1n

′
1 +m′2n

′
2.

(?) =
∑

m′
1,m

′
2>0

n′
1>n

′
2>0

en
′
2X1+(n′

1−n
′
2)X2+(m′

1+m
′
2)Y1+m

′
1Y2qm

′
1n

′
1+m

′
2n

′
2

= g

(
Y1 + Y2, Y1
X2, X1 −X2

)
.
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5© Bonus - Product of g

g

(
X1

Y1

)
g

(
X2

Y2

)
=
∑
m1>0

Lm1

(
X1

Y1

) ∑
m2>0

Lm2

(
X2

Y2

)

=

( ∑
m1>m2>0

+
∑

m2>m1>0

+
∑

m1=m2>0

)
Lm1

(
X1

Y1

)
Lm2

(
X2

Y2

)
= g

(
X1, X2

Y1, Y2

)
+ g

(
X2, X1

Y2, Y1

)
+
∑
m>0

Lm

(
X1

Y1

)
Lm

(
X2

Y2

)
.

To describe the product of g we need to describe for a fixedm the product of Lm.

Lemma

For allm ≥ 1 we have

Lm

(
X1

Y1

)
Lm

(
X2

Y2

)
=
Lm

(
X1

Y1+Y 2

)
− Lm

(
X2

Y1+Y 2

)
X1 −X2

+ Lm

(
X1, X2

Y1, Y2

)
+ Lm

(
X2, X1

Y2, Y1

)
where

Lm

(
X1, X2

Y1, Y2

)
= Lm

(
X1

Y1 + Y2

)(
β

(
X2 −X1

−Y2

)
− 1

2

)
+ β

(
X1 −X2

Y1

)
Lm

(
X2

Y1 + Y2

)
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5© Bonus - Product of g

g

(
X1

Y1

)
g

(
X2

Y2

)
=
∑
m1>0

Lm1

(
X1

Y1

) ∑
m2>0

Lm2

(
X2

Y2

)

=

( ∑
m1>m2>0

+
∑

m2>m1>0

+
∑

m1=m2>0

)
Lm1

(
X1

Y1

)
Lm2

(
X2

Y2

)
= g

(
X1, X2

Y1, Y2

)
+ g

(
X2, X1

Y2, Y1

)
+
∑
m>0

Lm

(
X1

Y1

)
Lm

(
X2

Y2

)
.

To describe the product of g we need to describe for a fixedm the product of Lm.

Lemma

For allm ≥ 1 we have

Lm

(
X1

Y1

)
Lm

(
X2

Y2

)
=
Lm

(
X1

Y1+Y 2

)
− Lm

(
X2

Y1+Y 2

)
X1 −X2

+ Lm

(
X1, X2

Y1, Y2

)
+ Lm

(
X2, X1

Y2, Y1

)
where

Lm

(
X1, X2

Y1, Y2

)
= Lm

(
X1

Y1 + Y2

)(
β

(
X2 −X1

−Y2

)
− 1

2

)
+ β

(
X1 −X2

Y1

)
Lm

(
X2

Y1 + Y2

)
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5© Bonus - Combinatorial MES

Proposition

For allm ≥ 1 the series

Lm

(
X

Y

)
=
eX+mY qm

1− eXqm
,

Lm

(
X1, X2

Y1, Y2

)
= Lm

(
X1

Y1 + Y2

)(
β

(
X2 −X1

−Y2

)
− 1

2

)
+ β

(
X1 −X2

Y1

)
Lm

(
X2

Y1 + Y2

)
,

Lm

(
X1, X2, X3

Y1, Y2, Y3

)
= explicit long formula

are symmetril.

Remark

The Lm
(
X
Y

)
can be seen as the the generating series of "bi-monotangent" function.

The construction of Lm
(
X1,...,Xr

Y1,...,Yr

)
in terms of β and Lm

(
X
Y

)
corresponds to

"Multitangent = MZV-linear combination of monotangent".
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5© Bonus - Make g symmetril

Proposition

If Lm is symmetril for allm ≥ 1, then

gil
(
X1

Y1

)
=
∑
m>0

Lm

(
X1

Y1

)
,

gil
(
X1, X2

Y1, Y2

)
=

∑
m1>m2>0

Lm1

(
X1

Y1

)
Lm2

(
X2

Y2

)
+
∑
m>0

Lm

(
X1, X2

Y1, Y2

)
,

gil
(
X1, X2, X3

Y1, Y2, Y3

)
=

∑
m1>m2>m3>0

Lm1

(
X1

Y1

)
Lm2

(
X2

Y2

)
Lm3

(
X3

Y3

)
+

∑
m1>m2>0

(
Lm1

(
X1, X2

Y1, Y2

)
Lm2

(
X3

Y3

)
+ Lm1

(
X1

Y1

)
Lm2

(
X2, X3

Y2, Y3

))
+
∑
m>0

Lm

(
X1, X2, X3

Y1, Y2, Y3

)
,

are also symmetril.
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5© Bonus - Combinatorial MES

Theorem (B.-Kühn-Matthes 2020+, B.-Burmester 2020+)

The following series are symmetril and swap invariant

G

(
X1

Y1

)
= gil

(
X1

Y1

)
+ β

(
X1

Y1

)
,

G

(
X1, X2

Y1, Y2

)
= gil

(
X1, X2

Y1, Y2

)
+ gil

(
X2

Y2

)
β

(
X1

Y1

)
+ β

(
X1, X2

Y1, Y2

)
,

G

(
X1, X2, X3

Y1, Y2, Y3

)
= gil

(
X1, X2, X3

Y1, Y2, Y3

)
+ gil

(
X1, X2

Y1, Y2

)
β

(
X3

Y3

)
+ gil

(
X1

Y1

)
β

(
X2, X3

Y2, Y3

)
+ β

(
X1, X2, X3

Y1, Y2, Y3

)
.

In the mould language: G is the mould product of the two symmetril bimoulds gil and β.

41 / 42



5© Bonus - Combinatorial MES explicit

Theorem (B.-Kühn-Matthes 2020+, B.-Burmester 2020+)

The following series are symmetril and swap invariant

G

(
X1

Y1

)
= β

(
X1

Y1

)
+ g

(
X1

Y1

)
,

G

(
X1, X2

Y1, Y2

)
= β

(
X1, X2

Y1, Y2

)
− β

(
X1 −X2

Y2

)
g

(
X1

Y1 + Y2

)
− 1

2
g

(
X1

Y1 + Y2

)
+ β

(
X2

Y2

)
g

(
X1

Y1

)
+ β

(
X1 −X2

Y1

)
g

(
X2

Y1 + Y2

)
+ g

(
X1, X2

Y1, Y2

)
.

In the mould language: G is the mould product of the two symmetril bimoulds gil

and β.

For the construction for depth≥ 3 (which conjecturally works in all depths) see

the talkslides of Annika Burmesters talk "Combinatorial multiple Eisenstein series"

at the JENTE Seminar (https://sites.google.com/view/jente-seminar/home).
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