Linear Algebra II
Tutorial 3

Spring 2024
25 th April

Matrix of a linear map

$$
\begin{aligned}
D: P_{2} & \rightarrow P_{2} \\
f & \longmapsto f^{\prime} \\
f(x)=a x^{2}+b x+c & (D f)(x)=2 a x+b
\end{aligned}
$$

Let $B_{1}=\left(x^{2}, x, 1\right)$. Claim: B_{1} is a basis of P_{2}
linear independence: Want to show that IE for all $x \in \mathbb{R}$

$$
\lambda_{1} x^{2}+\lambda_{2} x+\lambda_{3}=0,
$$

$$
\text { then } \lambda_{1}=\lambda_{2}=\lambda_{3}=0 \text {. }
$$

Choose $x=0,-1,1$;

$$
\begin{array}{ll}
x=0: & \lambda_{1} 0+\lambda_{2} 0+\lambda_{3}=0 \\
x=-1: & \lambda_{1}-\lambda_{2}+\lambda_{3}=0 \\
x=1: & \lambda_{1}+\lambda_{2}+\lambda_{3}=0
\end{array}
$$

$\Leftrightarrow\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{l}\lambda_{1} \\ \lambda_{2} \\ \lambda_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \stackrel{\text { LAT }}{\Rightarrow} \begin{aligned} & \text { Only solution } \\ & \text { is } \lambda_{1}=\lambda_{2}=\lambda_{3}=0\end{aligned}$
Clearly $P_{2}=\operatorname{span}\left\{x^{2}, x_{1} \mid\right\} \Rightarrow B_{1}$ is basis

We get an isomorphism

$$
\begin{aligned}
C_{B_{1}}: \mathbb{R}^{3} & \longrightarrow P_{2} \\
\left(\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right) & \mapsto \lambda_{1} x^{2}+\lambda_{2} x+\lambda_{3}
\end{aligned}
$$

We define (Lecture 3) the matrix of $F: V \rightarrow V$ with respect to a basis B by: $(\operatorname{dim} V=h)$

i.e. $[\bar{F}]_{B}$ is the matrix of the linear map

$$
C_{B}^{-1} \circ F \circ C_{B} ; \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

In our case:

$$
\begin{aligned}
& \text { In our case: } \\
& \left(C_{B_{1}}^{-1} \circ D \circ C_{B_{1}}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=C_{B}^{-1}\left(D\left(C_{B_{1}}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right)\right) \\
& =C_{B_{1}}^{-1}\left(D\left(a x^{2}+b x+c\right)\right)=C_{B}^{-1}(2 a x+b)
\end{aligned}
$$

$=\left(\begin{array}{c}0 \\ 2 a \\ b\end{array}\right)$ and there fore

$$
C_{B}^{-1} \circ D \circ C_{B_{1}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

$$
\begin{aligned}
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \longmapsto\left(\begin{array}{l}
0 \\
2 a \\
a
\end{array}\right) & =\underbrace{\left(\begin{array}{lll}
0 & 0 & c \\
2 & 0 & 0 \\
0 & 0
\end{array}\right)}_{[D]_{B_{1}}}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
\end{aligned}
$$

Notice: This matrix will look completely different for a different basis.

Homework 1: Vector spaces

Deadline: 22na April (23:55 JST), 2024

Exercise 0. (2 Points)

(i) Try to solve the exercises below and write the solutions down by hand (paper, tablet) or by computer (Latex only). Create one pdf-file which contains your name on the first page and submit it before the deadline ends in TACT at the Assignment "Homework 1". Use precisely the following format as a filename: "Familyname_Givenname_LA2_HW1.pdf". Repeat this for future Homework by replacing HW1 with HW2, HW3, etc.. Points will be removed in future homeworks if this is not the case.
(ii) Read Chapter 14 of the lecture notes and compare the results and definitions with the corresponding results in Linear Algebra I (Chapters 1-13).
(You don't need to write down anything for Exercise 0)
Exercise 1. $(3+2+2+1=8$ Points) Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be an injective function. Define on $V:=\operatorname{im}(\varphi)$ the addition \oplus and the scalar multiplication \odot for $u, v \in V$ and $\lambda \in \mathbb{R}$ by

$$
\begin{aligned}
& u \oplus v=\varphi\left(\varphi^{-1}(u)+\varphi^{-1}(v)\right) \\
& \lambda \odot v=\varphi\left(\lambda \cdot \varphi^{-1}(v)\right)
\end{aligned}
$$

Here + and \cdot denote the usual addition and multiplication in \mathbb{R}.
(i) Show that (V, \oplus, \odot) is a vector space. What is the neutral element of (V, \oplus, \odot) ?
(i.e. check that the operations \oplus and \odot satisfy the properties $(A .1)-(A .4)$ and $(C .1)-(C .4)$.)
(ii) Determine all subspaces of (V, \oplus, \odot).
(iii) Find an isomorphism

$$
F:(\mathbb{R},+, \cdot) \longrightarrow(V, \oplus, \odot) .
$$

Here $(\mathbb{R},+, \cdot)$ denotes the vector space \mathbb{R}^{1} with the usual addition and multiplication of real numbers.
(iv) Do (ii) and (iii) explicitly for the case $\varphi(x)=e^{x}$.

Exercise 2. $(2+2+2+2=8$ Points) Let \mathcal{P} denote the set of all polynomial functions from \mathbb{R} to \mathbb{R}. Define the following subsets

$$
\begin{aligned}
\mathcal{P}_{3} & =\{f \in \mathcal{P} \mid \operatorname{deg}(f) \leq 3\}, \\
U & =\left\{f \in \mathcal{P}_{3} \mid f(-2)=f(0)=0\right\} \subset \mathcal{P}_{3} .
\end{aligned}
$$

(i) Show that U is a subspace of \mathcal{P}_{3}.
(ii) Determine a basis $B=\left(b_{1}, \ldots, b_{n}\right)$ of U.
(iii) Determine the coordinate vector $[f]_{B}$ for the function $f \in U$ given by $f(x)=x(x+2)^{2}$.
(iv) Extend the basis B to a basis \tilde{B} of \mathcal{P}_{3}.
(i.e. find a basis of \mathcal{P}_{3}, which contains all the basis elements of your basis B of U)

Exercise 3. $\left(2+2+2=6\right.$ Points) Define for $M \in \mathbb{R}^{2 \times 2}$ the following set

$$
C(M)=\left\{A \in \mathbb{R}^{2 \times 2} \mid A M=M A\right\}
$$

(i) Show that for a given fixed $M \in \mathbb{R}^{2 \times 2}$ the set $C(M)$ is a subspace of $\mathbb{R}^{2 \times 2}$.
(ii) For $S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ determine a basis of $C(S)$.
(iii) Show that for all $M \in \mathbb{R}^{2 \times 2}$ we have

$$
2 \leq \operatorname{dim}(C(M)) \leq 4
$$

(i.e. show that there exists no matrix M, such that $C(M)$ has dimension 0 or 1.)

Hints for HW I:
Ex similar to tut|Exl.
Ex 2 - 11 - Exr
Ex 3: i) Check $0 \in C(M)$ (clear)
If $A, B \in C(M)$:

$$
\begin{aligned}
& \text { lear) } \quad \stackrel{\text { check }}{I} \\
& (A+B) M=\ldots=M(A+B) \\
& (\lambda A) M=\ldots=M(\lambda A)
\end{aligned}
$$

ii) Assume $A=\binom{a b}{c d}$. What does

$$
S A=A S \text { imply for a, } b_{1}, i_{1} \text { ? }
$$

iii) $\mathbb{R}^{2 \times 2}$ has basis $\left(\left(\begin{array}{c}1 \\ 0 \\ 00\end{array}\right),\binom{0}{00},\left(\begin{array}{l}0 \\ 00 \\ 1\end{array}\right),\binom{0}{0}\right)$

$$
\begin{aligned}
& \Rightarrow \operatorname{dim} \mathbb{R}^{2 \times 2}=4 \\
& C\left(I_{2}\right)=\left\{A \in \mathbb{R}^{2 \times 2} \mid A I_{2}=I_{2} A\right\} \\
&=\mathbb{R}^{2 \times 2}
\end{aligned}
$$

$$
\operatorname{dim} C\left(I_{2}\right)=4
$$

To show $\operatorname{dim}(C(n)) \geq 2$: Find matrices which are away silicon

