Tutorial 2: Vector spaces

A (real) vector space is a tuple $(V, +, \cdot)$, where V is a set together with two functions $+: V \times V \longrightarrow V$ $\cdot : \mathbb{R} \times V \longrightarrow V$ $(u, v) \mapsto u + v$ $(\lambda, v) \longmapsto \lambda v$ such that the following properties are satisfied: • Properties of the addition: (A.1) $\forall u, v, w \in V$: (u+v) + w = u + (v+w). (Associativity) (Commutativity) (A.2) $\forall u, v \in V: u + v = v + u.$ (A.3) $\exists n \in V, \forall u \in V: n + u = u.$ (Identity/neutral element of addition) (A.4) $\forall u \in V, \exists v \in V: u + v = n.$ (Inverse elements of addition) • Compatibility of addition and scalar multiplication: (C.1) $\forall u, v \in V, \lambda \in \mathbb{R}: \lambda \cdot (u+v) = \lambda u + \lambda v.$ (Distributivity I) (C.2) $\forall u \in V, \lambda, \mu \in \mathbb{R}: (\lambda + \mu) \cdot u = \lambda u + \mu u.$ (Distributivity II) (C.3) $\forall u \in V, \lambda, \mu \in \mathbb{R}: \lambda \cdot (\mu u) = (\lambda \mu) \cdot u.$ (C.4) $\forall u \in V: 1 \cdot u = u$.

Exercise 1. Let $V = \{x \in \mathbb{R} \mid x > 0\}$ and define for $u, v \in V$ and $\lambda \in \mathbb{R}$:

$$u \oplus v = uv,$$
$$\lambda \odot v = v^{\lambda}.$$

Show that (V, \oplus, \odot) is a vector space.

- A polynomial functions is a function $f : \mathbb{R} \to \mathbb{R}$, such that there exist fixed $a_0, a_1, \ldots, a_m \in \mathbb{R}$ with $f(x) = \sum_{j=0}^m a_j x^j$ for all $x \in \mathbb{R}$. The largest j with $a_j \neq 0$ is called the degree of f, denoted by deg(f).
- We denote the vector space of all polynomial functions by

 $\mathcal{P} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is a polynomial function} \},\$

where the addition and scalar multiplication is the usual one given on functions $\mathbb{R} \to \mathbb{R}$.

• For $n \ge 0$ denote by $\mathcal{P}_n = \{f \in \mathcal{P} \mid \deg(f) \le n\}$ the space of polynomial functions of degree $\le n$.

For example, the function $f(x) = x^3 + 2x$ is an element in \mathcal{P}_m for all $m \ge 3$, but not in $\mathcal{P}_2, \mathcal{P}_1$ or \mathcal{P}_0 .

Exercise 2. Consider the following subset of \mathcal{P}_2

$$U = \{ f \in \mathcal{P}_2 \mid f(1) = 0 \}.$$

Find a basis of U.