Linear Algebra II
Tutorial 1

Spring 2024
11 th April 2024

Review LAI:

- Linear systems $\left\{\begin{array}{l}x_{1}+x_{2}=3 \\ 2 x_{1}-x_{2}=5\end{array}\right.$

A $x \quad b$

- Matrices \& vectors $\left(\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{3}{5} \quad \begin{gathered}\text { rour-reduced } \\ \text { echelon furn }\end{gathered}$

$$
\begin{gathered}
(A \mid B)=\mathcal{L}_{2}^{-2}\left(\begin{array}{ccc}
1 & 1 & 3 \\
2 & -1 & 3
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 3 \\
0 & -3 & -3
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 1 & 3 \\
0 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right) \\
\text { Solution: } \begin{array}{l}
x_{1}=2 \\
x_{2}=1
\end{array} \\
\operatorname{rref}(A \mid B)
\end{gathered}
$$

$\mathbb{R}^{n \times 1}=\mathbb{R}^{n}$ : set of all vectors $\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$
$\mathbb{R}^{m \times n}$ : man matrice $m_{1}^{\prime}\left({ }^{n-}\right)$
For $x, y \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$ we defined
Addition: $x+y \in \mathbb{R}$
Scalar multiplication: $\lambda x \in \mathbb{R}$

- Linear maps: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
$\forall x, y \in \mathbb{R}^{n}$
i) $F(x+y)=F(x)+F(y)$
$\forall \lambda \in \mathbb{R}$
ii) $F(\lambda x)=\lambda F(x)$

Theorem: If $F$ is a lin. map. then $F(x)=[F] x$ Matrix of $F \mathbb{R}^{m_{x_{n}}}$

- Subspaces $U \subset \mathbb{R}^{n} \quad 0=\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right) \in \mathbb{R}^{n}$
i) $0 \in U$
ii) $x, y \in U \Rightarrow x+y \in U$
iii) $x \in U \Rightarrow \lambda x \in U$

Example: lines, planes, $\mathbb{R}^{n},\{0\}$

- Image \& Kernel of linear maps

$$
\begin{aligned}
F: \mathbb{R}^{n} & \mathbb{R}^{m} \\
\left\{x \in \mathbb{R}^{n} \mid P(x)=0\right\}=\operatorname{ker}(F) & \operatorname{im}(F)=\left\{y \in \mathbb{R}^{m} \mid \exists x \in \mathbb{R}^{n} ; F(x)=y\right\}
\end{aligned}
$$

Fact: Every subspace is the Kernel and image of some linear map.
Example: $U=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, x_{1}+x_{2}=0\right\}=\operatorname{Ker}(F)$

$$
F: \begin{array}{ll}
\mathbb{R}^{2} \rightarrow \underset{x_{1} \mid \mapsto}{2} \rightarrow & \mathbb{R} \\
x_{1}+x_{2}
\end{array}
$$

- Linear independency \& Bases $v_{11}, \ldots, v_{l}$ are lin. indep. if $\sum_{i=1}^{l} \lambda_{i} v_{i}=0 \Rightarrow \lambda_{i}=0 \forall i$. $B=\left(b_{1}, \ldots, b_{m}\right)$ is a basis of $U \subset \mathbb{R}^{n}$ if

1) $u=\operatorname{span}\left\{b_{1}, \ldots, b_{m}\right\}=\left\{\sum_{i=1}^{m} \lambda_{i} b_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}\right\}$
2) $b_{1}, \ldots, b_{m}$ are lin. indef.

If $\left(b_{1} \ldots b_{m}\right)$ is a basis of $U$ then $\operatorname{dim} U=m$.

Linear Algebra II: Generalize all the above concepts in $\mathbb{R}^{n}$ to general vector spaces.
These are spaces which also have a notion of " $t$ " (addition) and "." scalar multiplication such that the "usual rules" are satisfied.

Example: $F(\mathbb{R}, \mathbb{R})$ : All functions $\mathbb{R} \rightarrow R$
If $f, g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ we can define $f+g, \lambda \cdot f \in F(\mathbb{R}, 1 \mathbb{R})$

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& (\lambda f)(x)=\lambda \cdot f(x)
\end{aligned}
$$

$F(\mathbb{R}, \mathbb{R})$
U
$n^{2} 0$

$$
\underset{U}{C^{n}(\mathbb{R}, \mathbb{R})}=\left\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f^{(n)} \text { exists contend is }\right\}
$$

$C(\mathbb{R}, \mathbb{R})=$ continuous functions $\mathbb{R} \rightarrow \mathbb{R}$
U
$P=$ polynomial functions $\mathbb{R} \rightarrow \mathbb{R}$
$\cup \quad\left\{f \mid f(x)=\sum_{j=1}^{l} a_{j} x^{j} \quad\right.$ for some ${ }_{\text {and }}$ for, $a_{l} \in \mathbb{R}$
$P_{n}=$ polynomial functions of degree $\leq n$

$$
=\left\{f \mid f(x)=\sum_{j=1}^{n} a_{j} x^{j} \text { for rome } a_{11,} a_{n} \in R\right\}
$$

## Homework 1: Vector spaces

Deadline: 22nd April (23:55 JST), 2024
Exercise 0. (2 Points)
(i) Try to solve the exercises below and write the solutions down by hand (paper, tablet) or by computer (Latex only). Create one pdf-file which contains your name on the first page and submit it before the deadline ends in TACT at the Assignment "Homework 1". Use precisely the following format as a filename: "Familyname_Givenname_LA2_HW1.pdf". Repeat this for future Homework by replacing HW1 with HW2, HW3, etc.. Points will be removed in future homeworks if this is not the case.
(ii) Read Chapter 14 of the lecture notes and compare the results and definitions with the corresponding results in Linear Algebra I (Chapters 1-13).
(You don't need to write down anything for Exercise 0)
Exercise 1. $(3+2+2+1=8$ Points) Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be an injective function. Define on $V:=\operatorname{im}(\varphi)$ the addition $\oplus$ and the scalar multiplication $\odot$ for $u, v \in V$ and $\lambda \in \mathbb{R}$ by

$$
\begin{aligned}
& u \oplus v=\varphi\left(\varphi^{-1}(u)+\varphi^{-1}(v)\right) \\
& \lambda \odot v=\varphi\left(\lambda \cdot \varphi^{-1}(v)\right)
\end{aligned}
$$

Here + and $\cdot$ denote the usual addition and multiplication in $\mathbb{R}$.
(i) Show that $(V, \oplus, \odot)$ is a vector space. What is the neutral element of $(V, \oplus, \odot)$ ?
(i.e. check that the operations $\oplus$ and $\odot$ satisfy the properties $(A .1)-(A .4)$ and $(C .1)-(C .4)$.)
(ii) Determine all subspaces of $(V, \oplus, \odot)$.
(iii) Find an isomorphism

$$
F:(\mathbb{R},+, \cdot) \longrightarrow(V, \oplus, \odot) .
$$

Here $(\mathbb{R},+, \cdot)$ denotes the vector space $\mathbb{R}^{1}$ with the usual addition and multiplication of real numbers.
(iv) Do (ii) and (iii) explicitly for the case $\varphi(x)=e^{x}$.

Exercise 2. $(2+2+2+2=8$ Points) Let $\mathcal{P}$ denote the set of all polynomial functions from $\mathbb{R}$ to $\mathbb{R}$. Define the following subsets

$$
\begin{aligned}
\mathcal{P}_{3} & =\{f \in \mathcal{P} \mid \operatorname{deg}(f) \leq 3\}, \\
U & =\left\{f \in \mathcal{P}_{3} \mid f(-2)=f(0)=0\right\} \subset \mathcal{P}_{3} .
\end{aligned}
$$

(i) Show that $U$ is a subspace of $\mathcal{P}_{3}$.
(ii) Determine a basis $B=\left(b_{1}, \ldots, b_{n}\right)$ of $U$.
(iii) Determine the coordinate vector $[f]_{B}$ for the function $f \in U$ given by $f(x)=x(x+2)^{2}$.
(iv) Extend the basis $B$ to a basis $\tilde{B}$ of $\mathcal{P}_{3}$.
(i.e. find a basis of $\mathcal{P}_{3}$, which contains all the basis elements of your basis $B$ of $U$ )

Exercise 3. $\left(2+2+2=6\right.$ Points) Define for $M \in \mathbb{R}^{2 \times 2}$ the following set

$$
C(M)=\left\{A \in \mathbb{R}^{2 \times 2} \mid A M=M A\right\}
$$

(i) Show that for a given fixed $M \in \mathbb{R}^{2 \times 2}$ the set $C(M)$ is a subspace of $\mathbb{R}^{2 \times 2}$.
(ii) For $S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ determine a basis of $C(S)$.
(iii) Show that for all $M \in \mathbb{R}^{2 \times 2}$ we have

$$
2 \leq \operatorname{dim}(C(M)) \leq 4
$$

(i.e. show that there exists no matrix $M$, such that $C(M)$ has dimension 0 or 1.)


