Homework 2: Linear maps and their matrices

Deadline: 20th May (23:55 JST), 2024

Exercise 1. (2+2+2+2+2=10 Points) For $n \ge 0$ we define the map $H_n : \mathcal{P}_n \to \mathbb{R}^3$ for a $p \in \mathcal{P}_n$ by

$$H_n(p) = \begin{pmatrix} p(-1)\\ p(0)\\ p(1) \end{pmatrix}.$$

- (i) Show that H_n is a linear map for any $n \ge 0$.
- (ii) Show that H_2 is an isomorphism and calculate the inverse of H_2 .
- (iii) Determine $[H_4]_B^C$, where $B = (1, x 1, x^2 + 1, x^3 1, x^4 + 1)$ and C is the standard basis of \mathbb{R}^3 .
- (iv) Check if H_1 and H_3 are injective and/or surjective.
- (v) Determine a basis of $im(H_1)$ and $ker(H_3)$.

Exercise 2. (1+1+2+2=6 Points) The Fibonacci numbers F_n are defined by $F_0 = 0$, $F_1 = 1$ and

$$F_n = F_{n-1} + F_{n-2}$$
. $(n \ge 2)$

In this exercise we want to prove the following explicit formula

$$F_n = \frac{1}{2^n \sqrt{5}} \left((1 + \sqrt{5})^n - (1 - \sqrt{5})^n \right).$$
(B)

For this follow the following steps:

(i) Find a linear map
$$F : \mathbb{R}^2 \to \mathbb{R}^2$$
, such that $F^n \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} F_n\\F_{n+1} \end{pmatrix}$ for $n \ge 1$, where $F^n = \underbrace{F \circ \cdots \circ F}_n$

(ii) We define the following two bases of \mathbb{R}^2 :

$$B_1 = \left(\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right), \quad B_2 = \left(\begin{pmatrix} 2\\1+\sqrt{5} \end{pmatrix}, \begin{pmatrix} 2\\1-\sqrt{5} \end{pmatrix} \right).$$

Determine the change-of-basis matrices $S_{B_1}^{B_2}$ and $\left(S_{B_1}^{B_2}\right)^{-1}$.

- (iii) Calculate $[F]_{B_1}$ and $[F]_{B_2}$.
- (iv) Calculate $[F]_{B_1}^n$ by using

$$[F]_{B_1} = \left(S_{B_1}^{B_2}\right)^{-1} [F]_{B_2} S_{B_1}^{B_2}$$

and prove (\bigotimes) by using (i).

Exercise 3. (2+2+2=6 Points) We define the space of Fibonacci sequences by

$$\mathcal{F} = \{ (a_n)_{n \ge 0} \in \mathcal{J} \mid a_n = a_{n-1} + a_{n-2} \text{ for all } n \ge 2 \},\$$

where \mathcal{J} denotes the vector space of all infinite sequences (see Lecture 1).

- (i) Show that \mathcal{F} is a vector space with the addition and scalar multiplication coming from \mathcal{J} .
- (ii) Show that \mathcal{F} is finitely generated and find a basis B of \mathcal{F} .
- (iii) Define the map $G : \mathcal{F} \to \mathcal{F}$ on a sequence $a = (a_n)_{n \ge 0}$ by G(a) = b, where $b = (b_n)_{\ge 0}$ is given by $b_n = a_{n+2}$. Show that G is an isomorphism and determine $[G]_B$, where B is the basis in (ii).