Homework 2: Linear maps and their matrices

Deadline: 20th May (23:55 JST), 2024
Exercise 1. $\left(2+2+2+2+2=10\right.$ Points) For $n \geq 0$ we define the map $H_{n}: \mathcal{P}_{n} \rightarrow \mathbb{R}^{3}$ for a $p \in \mathcal{P}_{n}$ by

$$
H_{n}(p)=\left(\begin{array}{c}
p(-1) \\
p(0) \\
p(1)
\end{array}\right)
$$

(i) Show that H_{n} is a linear map for any $n \geq 0$.
(ii) Show that H_{2} is an isomorphism and calculate the inverse of H_{2}.
(iii) Determine $\left[H_{4}\right]_{B}^{C}$, where $B=\left(1, x-1, x^{2}+1, x^{3}-1, x^{4}+1\right)$ and C is the standard basis of \mathbb{R}^{3}.
(iv) Check if H_{1} and H_{3} are injective and/or surjective.
(v) Determine a basis of $\operatorname{im}\left(H_{1}\right)$ and $\operatorname{ker}\left(H_{3}\right)$.

Exercise 2. $\left(1+1+2+2=6\right.$ Points) The Fibonacci numbers F_{n} are defined by $F_{0}=0, F_{1}=1$ and

$$
F_{n}=F_{n-1}+F_{n-2} . \quad(n \geq 2)
$$

In this exercise we want to prove the following explicit formula

$$
\begin{equation*}
F_{n}=\frac{1}{2^{n} \sqrt{5}}\left((1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}\right) . \tag{風}
\end{equation*}
$$

For this follow the following steps:
(i) Find a linear map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, such that $F^{n}\binom{0}{1}=\binom{F_{n}}{F_{n+1}}$ for $n \geq 1$, where $F^{n}=\underbrace{F \circ \cdots \circ F}_{n}$.
(ii) We define the following two bases of \mathbb{R}^{2} :

$$
B_{1}=\left(\binom{1}{0},\binom{0}{1}\right), \quad B_{2}=\left(\binom{2}{1+\sqrt{5}},\binom{2}{1-\sqrt{5}}\right) .
$$

Determine the change-of-basis matrices $S_{B_{1}}^{B_{2}}$ and $\left(S_{B_{1}}^{B_{2}}\right)^{-1}$.
(iii) Calculate $[F]_{B_{1}}$ and $[F]_{B_{2}}$.
(iv) Calculate $[F]_{B_{1}}^{n}$ by using

$$
[F]_{B_{1}}=\left(S_{B_{1}}^{B_{2}}\right)^{-1}[F]_{B_{2}} S_{B_{1}}^{B_{2}}
$$

and prove by using (i).

Exercise 3. $(2+2+2=6$ Points) We define the space of Fibonacci sequences by

$$
\mathcal{F}=\left\{\left(a_{n}\right)_{n \geq 0} \in \mathcal{J} \mid a_{n}=a_{n-1}+a_{n-2} \text { for all } n \geq 2\right\}
$$

where \mathcal{J} denotes the vector space of all infinite sequences (see Lecture 1).
(i) Show that \mathcal{F} is a vector space with the addition and scalar multiplication coming from \mathcal{J}.
(ii) Show that \mathcal{F} is finitely generated and find a basis B of \mathcal{F}.
(iii) Define the map $G: \mathcal{F} \rightarrow \mathcal{F}$ on a sequence $a=\left(a_{n}\right)_{n \geq 0}$ by $G(a)=b$, where $b=\left(b_{n}\right)_{\geq 0}$ is given by $b_{n}=a_{n+2}$. Show that G is an isomorphism and determine $[G]_{B}$, where B is the basis in (ii).

